Partial regularity of minimizers of quasiconvex integrals
with subquadratic growth: the general case
Annales Polonici Mathematici, Tome 77 (2001) no. 3, pp. 219-243
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We prove partial regularity for minimizers of the functional
$\int _{{\mit \Omega } }f(x, u(x),
Du(x))\, dx$ where the integrand $f(x, u, \xi )$
is quasiconvex with subquadratic growth:
$|f(x, u, \xi )| \leq L(1+|\xi |^p) $, $p2$. We also obtain the same results for $\omega $-minimizers.
Keywords:
prove partial regularity minimizers functional int mit omega where integrand quasiconvex subquadratic growth leq obtain results omega minimizers
Affiliations des auteurs :
Menita Carozza 1 ; Giuseppe Mingione 2
@article{10_4064_ap77_3_3,
author = {Menita Carozza and Giuseppe Mingione},
title = {Partial regularity of minimizers of quasiconvex integrals
with subquadratic growth: the general case},
journal = {Annales Polonici Mathematici},
pages = {219--243},
publisher = {mathdoc},
volume = {77},
number = {3},
year = {2001},
doi = {10.4064/ap77-3-3},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap77-3-3/}
}
TY - JOUR AU - Menita Carozza AU - Giuseppe Mingione TI - Partial regularity of minimizers of quasiconvex integrals with subquadratic growth: the general case JO - Annales Polonici Mathematici PY - 2001 SP - 219 EP - 243 VL - 77 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/ap77-3-3/ DO - 10.4064/ap77-3-3 LA - en ID - 10_4064_ap77_3_3 ER -
%0 Journal Article %A Menita Carozza %A Giuseppe Mingione %T Partial regularity of minimizers of quasiconvex integrals with subquadratic growth: the general case %J Annales Polonici Mathematici %D 2001 %P 219-243 %V 77 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/ap77-3-3/ %R 10.4064/ap77-3-3 %G en %F 10_4064_ap77_3_3
Menita Carozza; Giuseppe Mingione. Partial regularity of minimizers of quasiconvex integrals with subquadratic growth: the general case. Annales Polonici Mathematici, Tome 77 (2001) no. 3, pp. 219-243. doi: 10.4064/ap77-3-3
Cité par Sources :