Multiplicity of positive solutions for a nonlinear fourth order equation
Annales Polonici Mathematici, Tome 77 (2001) no. 2, pp. 161-168.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We study the existence and multiplicity of positive solutions of the nonlinear fourth order problem $$ \left\{\eqalign{\!u^{(4)} =\lambda f(u) \quad \hbox{in } (0,1),\cr \!u(0)=a\ge 0, \quad u'(0)=a'\ge 0,\quad u(1)=b\ge 0,\quad u'(1)=-b'\le 0.\cr}\right. $$ The methods employed are upper and lower solutions and degree theory arguments.
DOI : 10.4064/ap77-2-3
Keywords: study existence multiplicity positive solutions nonlinear fourth order problem eqalign lambda quad hbox quad quad quad b right methods employed upper lower solutions degree theory arguments

D. R. Dunninger 1

1 Department of Mathematics Michigan State University East Lansing, MI 48824, U.S.A.
@article{10_4064_ap77_2_3,
     author = {D. R. Dunninger},
     title = {Multiplicity of positive solutions for a
nonlinear fourth order equation},
     journal = {Annales Polonici Mathematici},
     pages = {161--168},
     publisher = {mathdoc},
     volume = {77},
     number = {2},
     year = {2001},
     doi = {10.4064/ap77-2-3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ap77-2-3/}
}
TY  - JOUR
AU  - D. R. Dunninger
TI  - Multiplicity of positive solutions for a
nonlinear fourth order equation
JO  - Annales Polonici Mathematici
PY  - 2001
SP  - 161
EP  - 168
VL  - 77
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ap77-2-3/
DO  - 10.4064/ap77-2-3
LA  - en
ID  - 10_4064_ap77_2_3
ER  - 
%0 Journal Article
%A D. R. Dunninger
%T Multiplicity of positive solutions for a
nonlinear fourth order equation
%J Annales Polonici Mathematici
%D 2001
%P 161-168
%V 77
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ap77-2-3/
%R 10.4064/ap77-2-3
%G en
%F 10_4064_ap77_2_3
D. R. Dunninger. Multiplicity of positive solutions for a
nonlinear fourth order equation. Annales Polonici Mathematici, Tome 77 (2001) no. 2, pp. 161-168. doi : 10.4064/ap77-2-3. http://geodesic.mathdoc.fr/articles/10.4064/ap77-2-3/

Cité par Sources :