On shape and multiplicity of solutions for a singularly perturbed Neumann problem
Annales Polonici Mathematici, Tome 77 (2001) no. 2, pp. 119-159.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We investigate the effect of the topology of the boundary $\partial {\mit \Omega }$ and of the graph topology of the coefficient $Q$ on the number of solutions of the nonlinear Neumann problem $(1_d)$.
DOI : 10.4064/ap77-2-2
Keywords: investigate effect topology boundary partial mit omega graph topology coefficient number solutions nonlinear neumann problem

J. Chabrowski 1 ; Peter J. Watson 1 ; Jianfu Yang 2

1 Department of Mathematics The University of Queensland Brisbane 4072, Qld, Australia
2 Permanent address: Department of Mathematics Wuhan Institute of Physics and Mathematics Chinese Academy of Sciences P.O.Box 71010 Wuhan 430071, P.R. China Current address: ECC-UNICAMP 13083-970, Campinas, S.P. Brazil
@article{10_4064_ap77_2_2,
     author = {J. Chabrowski and Peter J. Watson and Jianfu Yang},
     title = {On shape and multiplicity of solutions
for a singularly perturbed {Neumann} problem},
     journal = {Annales Polonici Mathematici},
     pages = {119--159},
     publisher = {mathdoc},
     volume = {77},
     number = {2},
     year = {2001},
     doi = {10.4064/ap77-2-2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ap77-2-2/}
}
TY  - JOUR
AU  - J. Chabrowski
AU  - Peter J. Watson
AU  - Jianfu Yang
TI  - On shape and multiplicity of solutions
for a singularly perturbed Neumann problem
JO  - Annales Polonici Mathematici
PY  - 2001
SP  - 119
EP  - 159
VL  - 77
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ap77-2-2/
DO  - 10.4064/ap77-2-2
LA  - en
ID  - 10_4064_ap77_2_2
ER  - 
%0 Journal Article
%A J. Chabrowski
%A Peter J. Watson
%A Jianfu Yang
%T On shape and multiplicity of solutions
for a singularly perturbed Neumann problem
%J Annales Polonici Mathematici
%D 2001
%P 119-159
%V 77
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ap77-2-2/
%R 10.4064/ap77-2-2
%G en
%F 10_4064_ap77_2_2
J. Chabrowski; Peter J. Watson; Jianfu Yang. On shape and multiplicity of solutions
for a singularly perturbed Neumann problem. Annales Polonici Mathematici, Tome 77 (2001) no. 2, pp. 119-159. doi : 10.4064/ap77-2-2. http://geodesic.mathdoc.fr/articles/10.4064/ap77-2-2/

Cité par Sources :