On shape and multiplicity of solutions
for a singularly perturbed Neumann problem
Annales Polonici Mathematici, Tome 77 (2001) no. 2, pp. 119-159
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We investigate the effect of the topology of the boundary
$\partial {\mit \Omega }$ and of the graph topology of the
coefficient $Q$ on the number of solutions of the nonlinear
Neumann problem $(1_d)$.
Keywords:
investigate effect topology boundary partial mit omega graph topology coefficient number solutions nonlinear neumann problem
Affiliations des auteurs :
J. Chabrowski 1 ; Peter J. Watson 1 ; Jianfu Yang 2
@article{10_4064_ap77_2_2,
author = {J. Chabrowski and Peter J. Watson and Jianfu Yang},
title = {On shape and multiplicity of solutions
for a singularly perturbed {Neumann} problem},
journal = {Annales Polonici Mathematici},
pages = {119--159},
publisher = {mathdoc},
volume = {77},
number = {2},
year = {2001},
doi = {10.4064/ap77-2-2},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap77-2-2/}
}
TY - JOUR AU - J. Chabrowski AU - Peter J. Watson AU - Jianfu Yang TI - On shape and multiplicity of solutions for a singularly perturbed Neumann problem JO - Annales Polonici Mathematici PY - 2001 SP - 119 EP - 159 VL - 77 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/ap77-2-2/ DO - 10.4064/ap77-2-2 LA - en ID - 10_4064_ap77_2_2 ER -
%0 Journal Article %A J. Chabrowski %A Peter J. Watson %A Jianfu Yang %T On shape and multiplicity of solutions for a singularly perturbed Neumann problem %J Annales Polonici Mathematici %D 2001 %P 119-159 %V 77 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/ap77-2-2/ %R 10.4064/ap77-2-2 %G en %F 10_4064_ap77_2_2
J. Chabrowski; Peter J. Watson; Jianfu Yang. On shape and multiplicity of solutions for a singularly perturbed Neumann problem. Annales Polonici Mathematici, Tome 77 (2001) no. 2, pp. 119-159. doi: 10.4064/ap77-2-2
Cité par Sources :