Natural transformations of the composition
of Weil and cotangent functors
Annales Polonici Mathematici, Tome 77 (2001) no. 2, pp. 105-117
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We study geometrical properties of natural transformations
$T^AT^*\to T^*T^A$ depending on a linear function defined on the
Weil algebra $A$. We show that for many particular cases of $A$,
all natural transformations $T^AT^*\to T^*T^A$ can be described
in a uniform way by means of a simple geometrical
construction.
Keywords:
study geometrical properties natural transformations * *t depending linear function defined weil algebra many particular cases natural transformations * *t described uniform means simple geometrical construction
Affiliations des auteurs :
Miroslav Doupovec 1
@article{10_4064_ap77_2_1,
author = {Miroslav Doupovec},
title = {Natural transformations of the composition
of {Weil} and cotangent functors},
journal = {Annales Polonici Mathematici},
pages = {105--117},
publisher = {mathdoc},
volume = {77},
number = {2},
year = {2001},
doi = {10.4064/ap77-2-1},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap77-2-1/}
}
TY - JOUR AU - Miroslav Doupovec TI - Natural transformations of the composition of Weil and cotangent functors JO - Annales Polonici Mathematici PY - 2001 SP - 105 EP - 117 VL - 77 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/ap77-2-1/ DO - 10.4064/ap77-2-1 LA - en ID - 10_4064_ap77_2_1 ER -
Miroslav Doupovec. Natural transformations of the composition of Weil and cotangent functors. Annales Polonici Mathematici, Tome 77 (2001) no. 2, pp. 105-117. doi: 10.4064/ap77-2-1
Cité par Sources :