Second order differential inequalities in Banach spaces
Annales Polonici Mathematici, Tome 77 (2001) no. 1, pp. 69-78.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We derive monotonicity results for solutions of ordinary differential inequalities of second order in ordered normed spaces with respect to the boundary values. As a consequence, we get an existence theorem for the Dirichlet boundary value problem by means of a variant of Tarski's Fixed Point Theorem.
DOI : 10.4064/ap77-1-6
Keywords: derive monotonicity results solutions ordinary differential inequalities second order ordered normed spaces respect boundary values consequence get existence theorem dirichlet boundary value problem means variant tarskis fixed point theorem

Gerd Herzog 1 ; Roland Lemmert 1

1 Math. Institut I Universität Karlsruhe Englerstr. 2 76128 Karlsruhe, Germany
@article{10_4064_ap77_1_6,
     author = {Gerd Herzog and Roland Lemmert},
     title = {Second order differential inequalities in {Banach} spaces},
     journal = {Annales Polonici Mathematici},
     pages = {69--78},
     publisher = {mathdoc},
     volume = {77},
     number = {1},
     year = {2001},
     doi = {10.4064/ap77-1-6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ap77-1-6/}
}
TY  - JOUR
AU  - Gerd Herzog
AU  - Roland Lemmert
TI  - Second order differential inequalities in Banach spaces
JO  - Annales Polonici Mathematici
PY  - 2001
SP  - 69
EP  - 78
VL  - 77
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ap77-1-6/
DO  - 10.4064/ap77-1-6
LA  - en
ID  - 10_4064_ap77_1_6
ER  - 
%0 Journal Article
%A Gerd Herzog
%A Roland Lemmert
%T Second order differential inequalities in Banach spaces
%J Annales Polonici Mathematici
%D 2001
%P 69-78
%V 77
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ap77-1-6/
%R 10.4064/ap77-1-6
%G en
%F 10_4064_ap77_1_6
Gerd Herzog; Roland Lemmert. Second order differential inequalities in Banach spaces. Annales Polonici Mathematici, Tome 77 (2001) no. 1, pp. 69-78. doi : 10.4064/ap77-1-6. http://geodesic.mathdoc.fr/articles/10.4064/ap77-1-6/

Cité par Sources :