The complex Monge–Ampère equation for complex homogeneous functions in ${\mathbb C}^n$
Annales Polonici Mathematici, Tome 76 (2001) no. 3, pp. 287-302
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We prove some existence results for the complex
Monge–Ampère equation $(dd^cu)^n =gd\lambda $ in
${\mathbb C}^n $ in a certain class of homogeneous functions in
${\mathbb C}^n $, i.e. we show that for some nonnegative complex
homogeneous functions $g$ there exists a plurisubharmonic
complex homogeneous solution $u$ of the complex
Monge–Ampère equation.
Keywords:
prove existence results complex monge amp equation lambda mathbb certain class homogeneous functions mathbb nonnegative complex homogeneous functions there exists plurisubharmonic complex homogeneous solution complex monge amp equation
Affiliations des auteurs :
Rafał Czyż 1
@article{10_4064_ap76_3_7,
author = {Rafa{\l} Czy\.z},
title = {The complex {Monge{\textendash}Amp\`ere} equation for complex homogeneous functions in ${\mathbb C}^n$},
journal = {Annales Polonici Mathematici},
pages = {287--302},
publisher = {mathdoc},
volume = {76},
number = {3},
year = {2001},
doi = {10.4064/ap76-3-7},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap76-3-7/}
}
TY - JOUR
AU - Rafał Czyż
TI - The complex Monge–Ampère equation for complex homogeneous functions in ${\mathbb C}^n$
JO - Annales Polonici Mathematici
PY - 2001
SP - 287
EP - 302
VL - 76
IS - 3
PB - mathdoc
UR - http://geodesic.mathdoc.fr/articles/10.4064/ap76-3-7/
DO - 10.4064/ap76-3-7
LA - en
ID - 10_4064_ap76_3_7
ER -
Rafał Czyż. The complex Monge–Ampère equation for complex homogeneous functions in ${\mathbb C}^n$. Annales Polonici Mathematici, Tome 76 (2001) no. 3, pp. 287-302. doi: 10.4064/ap76-3-7
Cité par Sources :