Une nouvelle version du théorème d'extension de Hartogs pour les applications séparément holomorphes entre espaces analytiques
Annales Polonici Mathematici, Tome 76 (2001) no. 3, pp. 245-278.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

This paper is concerned with the problem of extension of separately holomorphic mappings defined on a “generalized cross" of a product of complex analytic spaces with values in a complex analytic space. The crosses considered here are inscribed in Borel rectangles (of a product of two complex analytic spaces) which are not necessarily open but are non-pluripolar and can be quite small from the topological point of view. Our first main result says that the singular set of a given separately holomorphic mapping defined on such a cross is quite small from the pluripotential point of view in the product space in the sense that each of its projections is pluripolar. Then for some special crosses, we deduce more precise results on the extension of separately holomorphic mappings on such crosses, giving generalizations of all the main results obtained earlier by various authors in this direction.
DOI : 10.4064/ap76-3-5
Mots-clés : paper concerned problem extension separately holomorphic mappings defined generalized cross product complex analytic spaces values complex analytic space crosses considered here inscribed borel rectangles product complex analytic spaces which necessarily non pluripolar quite small topological point view first main result says singular set given separately holomorphic mapping defined cross quite small pluripotential point view product space sense each its projections pluripolar special crosses deduce precise results extension separately holomorphic mappings crosses giving generalizations main results obtained earlier various authors direction

O. Alehyane 1 ; A. Zeriahi 2

1 Département de Mathématiques Université Chouaib Doukkali Faculté des Sciences, B.P. 20 El Jadida, Maroc
2 Laboratoire de Mathématiques Emile Picard UMR-CNRS 5580 Université Paul Sabatier 118 route de Narbonne F-31062 Toulouse, France
@article{10_4064_ap76_3_5,
     author = {O. Alehyane and A. Zeriahi},
     title = {Une nouvelle version du th\'eor\`eme d'extension
de {Hartogs} pour les applications s\'epar\'ement
holomorphes entre espaces analytiques},
     journal = {Annales Polonici Mathematici},
     pages = {245--278},
     publisher = {mathdoc},
     volume = {76},
     number = {3},
     year = {2001},
     doi = {10.4064/ap76-3-5},
     language = {fr},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ap76-3-5/}
}
TY  - JOUR
AU  - O. Alehyane
AU  - A. Zeriahi
TI  - Une nouvelle version du théorème d'extension
de Hartogs pour les applications séparément
holomorphes entre espaces analytiques
JO  - Annales Polonici Mathematici
PY  - 2001
SP  - 245
EP  - 278
VL  - 76
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ap76-3-5/
DO  - 10.4064/ap76-3-5
LA  - fr
ID  - 10_4064_ap76_3_5
ER  - 
%0 Journal Article
%A O. Alehyane
%A A. Zeriahi
%T Une nouvelle version du théorème d'extension
de Hartogs pour les applications séparément
holomorphes entre espaces analytiques
%J Annales Polonici Mathematici
%D 2001
%P 245-278
%V 76
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ap76-3-5/
%R 10.4064/ap76-3-5
%G fr
%F 10_4064_ap76_3_5
O. Alehyane; A. Zeriahi. Une nouvelle version du théorème d'extension
de Hartogs pour les applications séparément
holomorphes entre espaces analytiques. Annales Polonici Mathematici, Tome 76 (2001) no. 3, pp. 245-278. doi : 10.4064/ap76-3-5. http://geodesic.mathdoc.fr/articles/10.4064/ap76-3-5/

Cité par Sources :