Asymptotic stability of a system of randomly connected transformations on Polish spaces
Annales Polonici Mathematici, Tome 76 (2001) no. 3, pp. 197-211.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We give sufficient conditions for the existence of a matrix of probabilities $[p_{ik}]_{i,k=1}^N$ such that a system of randomly chosen transformations ${\mit \Pi }_k ,\ k=1,\dots ,N $, with probabilities $p_{ik}$ is asymptotically stable.
DOI : 10.4064/ap76-3-3
Keywords: sufficient conditions existence matrix probabilities system randomly chosen transformations mit dots probabilities asymptotically stable

Katarzyna Horbacz 1

1 Institute of Mathematics Silesian University Bankowa 14 40-007 Katowice, Poland
@article{10_4064_ap76_3_3,
     author = {Katarzyna Horbacz},
     title = {Asymptotic stability of a system of randomly
connected transformations on {Polish} spaces},
     journal = {Annales Polonici Mathematici},
     pages = {197--211},
     publisher = {mathdoc},
     volume = {76},
     number = {3},
     year = {2001},
     doi = {10.4064/ap76-3-3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ap76-3-3/}
}
TY  - JOUR
AU  - Katarzyna Horbacz
TI  - Asymptotic stability of a system of randomly
connected transformations on Polish spaces
JO  - Annales Polonici Mathematici
PY  - 2001
SP  - 197
EP  - 211
VL  - 76
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ap76-3-3/
DO  - 10.4064/ap76-3-3
LA  - en
ID  - 10_4064_ap76_3_3
ER  - 
%0 Journal Article
%A Katarzyna Horbacz
%T Asymptotic stability of a system of randomly
connected transformations on Polish spaces
%J Annales Polonici Mathematici
%D 2001
%P 197-211
%V 76
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ap76-3-3/
%R 10.4064/ap76-3-3
%G en
%F 10_4064_ap76_3_3
Katarzyna Horbacz. Asymptotic stability of a system of randomly
connected transformations on Polish spaces. Annales Polonici Mathematici, Tome 76 (2001) no. 3, pp. 197-211. doi : 10.4064/ap76-3-3. http://geodesic.mathdoc.fr/articles/10.4064/ap76-3-3/

Cité par Sources :