On locally bounded solutions of Schilling's problem
Annales Polonici Mathematici, Tome 76 (2001) no. 3, pp. 169-188.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We prove that for some parameters $q\in (0,1)$ every solution $f:{\mathbb R}\rightarrow {\mathbb R}$ of the functional equation $$ f(qx)={1\over 4q}[f(x-1)+f(x+1)+2f(x)] $$ which vanishes outside the interval $[-{q} /({1-q}),{q}/({1-q})]$ and is bounded in a neighbourhood of a point of that interval vanishes everywhere.
DOI : 10.4064/ap76-3-1
Keywords: prove parameters every solution mathbb rightarrow mathbb functional equation x which vanishes outside interval q q bounded neighbourhood point interval vanishes everywhere

Janusz Morawiec 1

1 Institute of Mathematics Silesian University Bankowa 14 40-007 Katowice, Poland
@article{10_4064_ap76_3_1,
     author = {Janusz Morawiec},
     title = {On locally bounded solutions
of {Schilling's} problem},
     journal = {Annales Polonici Mathematici},
     pages = {169--188},
     publisher = {mathdoc},
     volume = {76},
     number = {3},
     year = {2001},
     doi = {10.4064/ap76-3-1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ap76-3-1/}
}
TY  - JOUR
AU  - Janusz Morawiec
TI  - On locally bounded solutions
of Schilling's problem
JO  - Annales Polonici Mathematici
PY  - 2001
SP  - 169
EP  - 188
VL  - 76
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ap76-3-1/
DO  - 10.4064/ap76-3-1
LA  - en
ID  - 10_4064_ap76_3_1
ER  - 
%0 Journal Article
%A Janusz Morawiec
%T On locally bounded solutions
of Schilling's problem
%J Annales Polonici Mathematici
%D 2001
%P 169-188
%V 76
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ap76-3-1/
%R 10.4064/ap76-3-1
%G en
%F 10_4064_ap76_3_1
Janusz Morawiec. On locally bounded solutions
of Schilling's problem. Annales Polonici Mathematici, Tome 76 (2001) no. 3, pp. 169-188. doi : 10.4064/ap76-3-1. http://geodesic.mathdoc.fr/articles/10.4064/ap76-3-1/

Cité par Sources :