On locally bounded solutions
of Schilling's problem
Annales Polonici Mathematici, Tome 76 (2001) no. 3, pp. 169-188
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We prove that for some parameters $q\in (0,1)$ every
solution $f:{\mathbb R}\rightarrow {\mathbb R}$ of the functional
equation $$ f(qx)={1\over 4q}[f(x-1)+f(x+1)+2f(x)] $$ which
vanishes outside the interval $[-{q}
/({1-q}),{q}/({1-q})]$ and is bounded in a
neighbourhood of a point of that interval vanishes
everywhere.
Keywords:
prove parameters every solution mathbb rightarrow mathbb functional equation x which vanishes outside interval q q bounded neighbourhood point interval vanishes everywhere
Affiliations des auteurs :
Janusz Morawiec 1
@article{10_4064_ap76_3_1,
author = {Janusz Morawiec},
title = {On locally bounded solutions
of {Schilling's} problem},
journal = {Annales Polonici Mathematici},
pages = {169--188},
publisher = {mathdoc},
volume = {76},
number = {3},
year = {2001},
doi = {10.4064/ap76-3-1},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap76-3-1/}
}
Janusz Morawiec. On locally bounded solutions of Schilling's problem. Annales Polonici Mathematici, Tome 76 (2001) no. 3, pp. 169-188. doi: 10.4064/ap76-3-1
Cité par Sources :