Length 2 variables of $A[x,y]$ and transfer
Annales Polonici Mathematici, Tome 76 (2001) no. 1-2, pp. 67-76
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We construct and study length $2$ variables of $A[x,y]$ ($A$
is a commutative ring). If $A$ is an integral domain, we
determine among these variables those which are tame. If $A$ is
a UFD, we prove that these variables are all stably tame. We
apply this construction to show that some polynomials of
$A[x_1,\dots,x_n]$ are variables
using transfer.
Keywords:
construct study length variables commutative ring integral domain determine among these variables those which tame ufd prove these variables stably tame apply construction polynomials dots variables using transfer
Affiliations des auteurs :
Eric Edo 1 ; Stéphane Vénéreau 2
@article{10_4064_ap76_1_6,
author = {Eric Edo and St\'ephane V\'en\'ereau},
title = {Length 2 variables of $A[x,y]$ and transfer},
journal = {Annales Polonici Mathematici},
pages = {67--76},
publisher = {mathdoc},
volume = {76},
number = {1-2},
year = {2001},
doi = {10.4064/ap76-1-6},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap76-1-6/}
}
TY - JOUR AU - Eric Edo AU - Stéphane Vénéreau TI - Length 2 variables of $A[x,y]$ and transfer JO - Annales Polonici Mathematici PY - 2001 SP - 67 EP - 76 VL - 76 IS - 1-2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/ap76-1-6/ DO - 10.4064/ap76-1-6 LA - en ID - 10_4064_ap76_1_6 ER -
Eric Edo; Stéphane Vénéreau. Length 2 variables of $A[x,y]$ and transfer. Annales Polonici Mathematici, Tome 76 (2001) no. 1-2, pp. 67-76. doi: 10.4064/ap76-1-6
Cité par Sources :