Characteristic values of the Jacobian matrix
and global invertibility
Annales Polonici Mathematici, Tome 76 (2001) no. 1-2, pp. 11-20
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Characteristic matrix values (singular values, eigenvalues,
and pivots arising from Gaussian elimination) for the Jacobian
matrix and its inverse are considered for maps of real $n$-space
to itself with a nowhere vanishing Jacobian determinant. Bounds
on these are related to global invertibility of the map.
Polynomial maps with a constant nonzero Jacobian determinant are
a special case that allows for sharper
characterizations.
Keywords:
characteristic matrix values singular values eigenvalues pivots arising gaussian elimination jacobian matrix its inverse considered maps real n space itself nowhere vanishing jacobian determinant bounds these related global invertibility map polynomial maps constant nonzero jacobian determinant special allows sharper characterizations
Affiliations des auteurs :
L. Andrew Campbell 1
@article{10_4064_ap76_1_2,
author = {L. Andrew Campbell},
title = {Characteristic values of the {Jacobian} matrix
and global invertibility},
journal = {Annales Polonici Mathematici},
pages = {11--20},
publisher = {mathdoc},
volume = {76},
number = {1-2},
year = {2001},
doi = {10.4064/ap76-1-2},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap76-1-2/}
}
TY - JOUR AU - L. Andrew Campbell TI - Characteristic values of the Jacobian matrix and global invertibility JO - Annales Polonici Mathematici PY - 2001 SP - 11 EP - 20 VL - 76 IS - 1-2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/ap76-1-2/ DO - 10.4064/ap76-1-2 LA - en ID - 10_4064_ap76_1_2 ER -
L. Andrew Campbell. Characteristic values of the Jacobian matrix and global invertibility. Annales Polonici Mathematici, Tome 76 (2001) no. 1-2, pp. 11-20. doi: 10.4064/ap76-1-2
Cité par Sources :