Characteristic values of the Jacobian matrix
and global invertibility
Annales Polonici Mathematici, Tome 76 (2001) no. 1-2, pp. 11-20
Characteristic matrix values (singular values, eigenvalues,
and pivots arising from Gaussian elimination) for the Jacobian
matrix and its inverse are considered for maps of real $n$-space
to itself with a nowhere vanishing Jacobian determinant. Bounds
on these are related to global invertibility of the map.
Polynomial maps with a constant nonzero Jacobian determinant are
a special case that allows for sharper
characterizations.
Keywords:
characteristic matrix values singular values eigenvalues pivots arising gaussian elimination jacobian matrix its inverse considered maps real n space itself nowhere vanishing jacobian determinant bounds these related global invertibility map polynomial maps constant nonzero jacobian determinant special allows sharper characterizations
Affiliations des auteurs :
L. Andrew Campbell  1
@article{10_4064_ap76_1_2,
author = {L. Andrew Campbell},
title = {Characteristic values of the {Jacobian} matrix
and global invertibility},
journal = {Annales Polonici Mathematici},
pages = {11--20},
year = {2001},
volume = {76},
number = {1-2},
doi = {10.4064/ap76-1-2},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap76-1-2/}
}
TY - JOUR AU - L. Andrew Campbell TI - Characteristic values of the Jacobian matrix and global invertibility JO - Annales Polonici Mathematici PY - 2001 SP - 11 EP - 20 VL - 76 IS - 1-2 UR - http://geodesic.mathdoc.fr/articles/10.4064/ap76-1-2/ DO - 10.4064/ap76-1-2 LA - en ID - 10_4064_ap76_1_2 ER -
L. Andrew Campbell. Characteristic values of the Jacobian matrix and global invertibility. Annales Polonici Mathematici, Tome 76 (2001) no. 1-2, pp. 11-20. doi: 10.4064/ap76-1-2
Cité par Sources :