An algorithm to compute the kernel of a derivation up to a certain degree
Annales Polonici Mathematici, Tome 76 (2001) no. 1-2, pp. 147-158.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

An algorithm is described which computes generators of the kernel of derivations on $k[X_1,\dots ,X_n]$ up to a previously given bound. For $w$-homogeneous derivations it is shown that if the algorithm computes a generating set for the kernel then this set is minimal.
DOI : 10.4064/ap76-1-15
Keywords: algorithm described which computes generators kernel derivations dots previously given bound w homogeneous derivations shown algorithm computes generating set kernel set minimal

Stefan Maubach 1

1 Department of Mathematics University of Nijmegen Toernooiveld 1 6525 ED Nijmegen, The Netherlands
@article{10_4064_ap76_1_15,
     author = {Stefan Maubach},
     title = {An algorithm to compute the kernel of a derivation
up to a certain degree},
     journal = {Annales Polonici Mathematici},
     pages = {147--158},
     publisher = {mathdoc},
     volume = {76},
     number = {1-2},
     year = {2001},
     doi = {10.4064/ap76-1-15},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ap76-1-15/}
}
TY  - JOUR
AU  - Stefan Maubach
TI  - An algorithm to compute the kernel of a derivation
up to a certain degree
JO  - Annales Polonici Mathematici
PY  - 2001
SP  - 147
EP  - 158
VL  - 76
IS  - 1-2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ap76-1-15/
DO  - 10.4064/ap76-1-15
LA  - en
ID  - 10_4064_ap76_1_15
ER  - 
%0 Journal Article
%A Stefan Maubach
%T An algorithm to compute the kernel of a derivation
up to a certain degree
%J Annales Polonici Mathematici
%D 2001
%P 147-158
%V 76
%N 1-2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ap76-1-15/
%R 10.4064/ap76-1-15
%G en
%F 10_4064_ap76_1_15
Stefan Maubach. An algorithm to compute the kernel of a derivation
up to a certain degree. Annales Polonici Mathematici, Tome 76 (2001) no. 1-2, pp. 147-158. doi : 10.4064/ap76-1-15. http://geodesic.mathdoc.fr/articles/10.4064/ap76-1-15/

Cité par Sources :