An algorithm to compute the kernel of a derivation
up to a certain degree
Annales Polonici Mathematici, Tome 76 (2001) no. 1-2, pp. 147-158
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
An algorithm is described which computes generators of the
kernel of derivations on $k[X_1,\dots
,X_n]$ up to a previously given bound. For $w$-homogeneous
derivations it is shown that if the algorithm computes a
generating set for the kernel then this set is minimal.
Keywords:
algorithm described which computes generators kernel derivations dots previously given bound w homogeneous derivations shown algorithm computes generating set kernel set minimal
Affiliations des auteurs :
Stefan Maubach 1
@article{10_4064_ap76_1_15,
author = {Stefan Maubach},
title = {An algorithm to compute the kernel of a derivation
up to a certain degree},
journal = {Annales Polonici Mathematici},
pages = {147--158},
publisher = {mathdoc},
volume = {76},
number = {1-2},
year = {2001},
doi = {10.4064/ap76-1-15},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap76-1-15/}
}
TY - JOUR AU - Stefan Maubach TI - An algorithm to compute the kernel of a derivation up to a certain degree JO - Annales Polonici Mathematici PY - 2001 SP - 147 EP - 158 VL - 76 IS - 1-2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/ap76-1-15/ DO - 10.4064/ap76-1-15 LA - en ID - 10_4064_ap76_1_15 ER -
Stefan Maubach. An algorithm to compute the kernel of a derivation up to a certain degree. Annales Polonici Mathematici, Tome 76 (2001) no. 1-2, pp. 147-158. doi: 10.4064/ap76-1-15
Cité par Sources :