A characterization of proper regular mappings
Annales Polonici Mathematici, Tome 76 (2001) no. 1-2, pp. 127-138
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $X$, $Y$ be complex affine varieties and $f:X\to Y$ a
regular mapping. We prove that if $\mathop {\rm
dim}\nolimits X\ge 2$ and $f$ is closed in the Zariski topology
then $f$ is proper in the classical topology.
Keywords:
complex affine varieties regular mapping prove mathop dim nolimits closed zariski topology proper classical topology
Affiliations des auteurs :
T. Krasiński 1 ; S. Spodzieja 1
@article{10_4064_ap76_1_13,
author = {T. Krasi\'nski and S. Spodzieja},
title = {A characterization of proper regular mappings},
journal = {Annales Polonici Mathematici},
pages = {127--138},
publisher = {mathdoc},
volume = {76},
number = {1-2},
year = {2001},
doi = {10.4064/ap76-1-13},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap76-1-13/}
}
TY - JOUR AU - T. Krasiński AU - S. Spodzieja TI - A characterization of proper regular mappings JO - Annales Polonici Mathematici PY - 2001 SP - 127 EP - 138 VL - 76 IS - 1-2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/ap76-1-13/ DO - 10.4064/ap76-1-13 LA - en ID - 10_4064_ap76_1_13 ER -
T. Krasiński; S. Spodzieja. A characterization of proper regular mappings. Annales Polonici Mathematici, Tome 76 (2001) no. 1-2, pp. 127-138. doi: 10.4064/ap76-1-13
Cité par Sources :