Let $X$, $Y$ be complex affine varieties and $f:X\to Y$ a
regular mapping. We prove that if $\mathop {\rm
dim}\nolimits X\ge 2$ and $f$ is closed in the Zariski topology
then $f$ is proper in the classical topology.
@article{10_4064_ap76_1_13,
author = {T. Krasi\'nski and S. Spodzieja},
title = {A characterization of proper regular mappings},
journal = {Annales Polonici Mathematici},
pages = {127--138},
year = {2001},
volume = {76},
number = {1-2},
doi = {10.4064/ap76-1-13},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap76-1-13/}
}
TY - JOUR
AU - T. Krasiński
AU - S. Spodzieja
TI - A characterization of proper regular mappings
JO - Annales Polonici Mathematici
PY - 2001
SP - 127
EP - 138
VL - 76
IS - 1-2
UR - http://geodesic.mathdoc.fr/articles/10.4064/ap76-1-13/
DO - 10.4064/ap76-1-13
LA - en
ID - 10_4064_ap76_1_13
ER -
%0 Journal Article
%A T. Krasiński
%A S. Spodzieja
%T A characterization of proper regular mappings
%J Annales Polonici Mathematici
%D 2001
%P 127-138
%V 76
%N 1-2
%U http://geodesic.mathdoc.fr/articles/10.4064/ap76-1-13/
%R 10.4064/ap76-1-13
%G en
%F 10_4064_ap76_1_13
T. Krasiński; S. Spodzieja. A characterization of proper regular mappings. Annales Polonici Mathematici, Tome 76 (2001) no. 1-2, pp. 127-138. doi: 10.4064/ap76-1-13