The Real Jacobian Conjecture for polynomials of degree 3
Annales Polonici Mathematici, Tome 76 (2001) no. 1-2, pp. 121-125
We show that every local polynomial diffeomorphism $(f,g)$
of the real plane such that $\mathop {\rm
deg}\nolimits f\leq 3$, $\mathop {\rm deg}\nolimits
g\leq 3$ is a global diffeomorphism.
Keywords:
every local polynomial diffeomorphism real plane mathop deg nolimits leq mathop deg nolimits leq global diffeomorphism
Affiliations des auteurs :
Janusz Gwo/xdziewicz  1
@article{10_4064_ap76_1_12,
author = {Janusz Gwo/xdziewicz},
title = {The {Real} {Jacobian} {Conjecture} for polynomials of degree 3},
journal = {Annales Polonici Mathematici},
pages = {121--125},
year = {2001},
volume = {76},
number = {1-2},
doi = {10.4064/ap76-1-12},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap76-1-12/}
}
Janusz Gwo/xdziewicz. The Real Jacobian Conjecture for polynomials of degree 3. Annales Polonici Mathematici, Tome 76 (2001) no. 1-2, pp. 121-125. doi: 10.4064/ap76-1-12
Cité par Sources :