The Real Jacobian Conjecture for polynomials of degree 3
Annales Polonici Mathematici, Tome 76 (2001) no. 1-2, pp. 121-125
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We show that every local polynomial diffeomorphism $(f,g)$
of the real plane such that $\mathop {\rm
deg}\nolimits f\leq 3$, $\mathop {\rm deg}\nolimits
g\leq 3$ is a global diffeomorphism.
Keywords:
every local polynomial diffeomorphism real plane mathop deg nolimits leq mathop deg nolimits leq global diffeomorphism
Affiliations des auteurs :
Janusz Gwo/xdziewicz 1
@article{10_4064_ap76_1_12,
author = {Janusz Gwo/xdziewicz},
title = {The {Real} {Jacobian} {Conjecture} for polynomials of degree 3},
journal = {Annales Polonici Mathematici},
pages = {121--125},
publisher = {mathdoc},
volume = {76},
number = {1-2},
year = {2001},
doi = {10.4064/ap76-1-12},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap76-1-12/}
}
TY - JOUR AU - Janusz Gwo/xdziewicz TI - The Real Jacobian Conjecture for polynomials of degree 3 JO - Annales Polonici Mathematici PY - 2001 SP - 121 EP - 125 VL - 76 IS - 1-2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/ap76-1-12/ DO - 10.4064/ap76-1-12 LA - en ID - 10_4064_ap76_1_12 ER -
Janusz Gwo/xdziewicz. The Real Jacobian Conjecture for polynomials of degree 3. Annales Polonici Mathematici, Tome 76 (2001) no. 1-2, pp. 121-125. doi: 10.4064/ap76-1-12
Cité par Sources :