Let $k$ be a commutative field. For any $a,b\in k$, we
denote by $J_{a,b}(k)$ the deformation of the 2-dimensional Weyl
algebra over $k$ associated with the Jordanian Hecke symmetry
with parameters $a$ and $b$. We prove that: (i) any $J_{a,b}(k)$
can be embedded in the usual Weyl algebra $A_2(k)$, and (ii)
$J_{a,b}(k)$ is isomorphic to $A_2(k)$ if and only if
$a=b$.
@article{10_4064_ap76_1_1,
author = {J. Alev and F. Dumas},
title = {Pr\'esentation jordanienne de l'alg\`ebre {de
Weyl} $A_2$},
journal = {Annales Polonici Mathematici},
pages = {1--9},
year = {2001},
volume = {76},
number = {1-2},
doi = {10.4064/ap76-1-1},
language = {fr},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap76-1-1/}
}
TY - JOUR
AU - J. Alev
AU - F. Dumas
TI - Présentation jordanienne de l'algèbre de
Weyl $A_2$
JO - Annales Polonici Mathematici
PY - 2001
SP - 1
EP - 9
VL - 76
IS - 1-2
UR - http://geodesic.mathdoc.fr/articles/10.4064/ap76-1-1/
DO - 10.4064/ap76-1-1
LA - fr
ID - 10_4064_ap76_1_1
ER -
%0 Journal Article
%A J. Alev
%A F. Dumas
%T Présentation jordanienne de l'algèbre de
Weyl $A_2$
%J Annales Polonici Mathematici
%D 2001
%P 1-9
%V 76
%N 1-2
%U http://geodesic.mathdoc.fr/articles/10.4064/ap76-1-1/
%R 10.4064/ap76-1-1
%G fr
%F 10_4064_ap76_1_1
J. Alev; F. Dumas. Présentation jordanienne de l'algèbre de
Weyl $A_2$. Annales Polonici Mathematici, Tome 76 (2001) no. 1-2, pp. 1-9. doi: 10.4064/ap76-1-1