Présentation jordanienne de l'algèbre de
Weyl $A_2$
Annales Polonici Mathematici, Tome 76 (2001) no. 1-2, pp. 1-9
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $k$ be a commutative field. For any $a,b\in k$, we
denote by $J_{a,b}(k)$ the deformation of the 2-dimensional Weyl
algebra over $k$ associated with the Jordanian Hecke symmetry
with parameters $a$ and $b$. We prove that: (i) any $J_{a,b}(k)$
can be embedded in the usual Weyl algebra $A_2(k)$, and (ii)
$J_{a,b}(k)$ is isomorphic to $A_2(k)$ if and only if
$a=b$.
Mots-clés :
commutative field denote deformation dimensional weyl algebra associated jordanian hecke symmetry parameters prove embedded usual weyl algebra isomorphic only
Affiliations des auteurs :
J. Alev 1 ; F. Dumas 2
@article{10_4064_ap76_1_1,
author = {J. Alev and F. Dumas},
title = {Pr\'esentation jordanienne de l'alg\`ebre {de
Weyl} $A_2$},
journal = {Annales Polonici Mathematici},
pages = {1--9},
publisher = {mathdoc},
volume = {76},
number = {1-2},
year = {2001},
doi = {10.4064/ap76-1-1},
language = {fr},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap76-1-1/}
}
J. Alev; F. Dumas. Présentation jordanienne de l'algèbre de Weyl $A_2$. Annales Polonici Mathematici, Tome 76 (2001) no. 1-2, pp. 1-9. doi: 10.4064/ap76-1-1
Cité par Sources :