Noncompact complete manifolds with cyclic parallel Ricci curvature
Annales Polonici Mathematici, Tome 119 (2017) no. 2, pp. 95-105
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $(M^n,g)$ be a noncompact complete $n$-dimensional Riemannian manifold with cyclic parallel Ricci curvature and positive Yamabe constant. When the scalar curvature $R$ is negative, assuming that the $L^\beta $-norms (see Theorem 1.1 for the range of $\beta $) of the Weyl curvature are finite, we show that $(M^n,g)$ is a space form if $n\ge 7$ and the $L^{n/2}$-norms of the traceless Ricci curvature and Weyl curvature are small enough. When $R=0,$ the same rigidity result is also obtained for all dimensions $n\ge 3$ without the assumption on the $L^\beta $-norms of the Weyl curvature.
Keywords:
noncompact complete n dimensional riemannian manifold cyclic parallel ricci curvature positive yamabe constant scalar curvature negative assuming beta norms see theorem range nbsp beta weyl curvature finite space form norms traceless ricci curvature weyl curvature small enough rigidity result obtained dimensions without assumption beta norms weyl curvature
Affiliations des auteurs :
Yawei Chu 1
@article{10_4064_ap4123_3_2017,
author = {Yawei Chu},
title = {Noncompact complete manifolds with cyclic parallel {Ricci} curvature},
journal = {Annales Polonici Mathematici},
pages = {95--105},
publisher = {mathdoc},
volume = {119},
number = {2},
year = {2017},
doi = {10.4064/ap4123-3-2017},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap4123-3-2017/}
}
TY - JOUR AU - Yawei Chu TI - Noncompact complete manifolds with cyclic parallel Ricci curvature JO - Annales Polonici Mathematici PY - 2017 SP - 95 EP - 105 VL - 119 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/ap4123-3-2017/ DO - 10.4064/ap4123-3-2017 LA - en ID - 10_4064_ap4123_3_2017 ER -
Yawei Chu. Noncompact complete manifolds with cyclic parallel Ricci curvature. Annales Polonici Mathematici, Tome 119 (2017) no. 2, pp. 95-105. doi: 10.4064/ap4123-3-2017
Cité par Sources :