Jordan–Hölder composition series of regular $(a,b)$-modules
Annales Polonici Mathematici, Tome 120 (2017) no. 3, pp. 261-270
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
A classical result of singularity theory states that the spectrum of an isolated hypersurface singularity is symmetric with respect to $n/2$, where $n$ is the dimension of the enclosing space. We prove a similar result for the Jordan–Hölder composition series of the $(a,b)$-module associated to an isolated hypersurface singularity.
Mots-clés :
classical result singularity theory states spectrum isolated hypersurface singularity symmetric respect where dimension enclosing space prove similar result jordan lder composition series module associated isolated hypersurface singularity
Affiliations des auteurs :
Piotr P. Karwasz 1
@article{10_4064_ap4096_11_2017,
author = {Piotr P. Karwasz},
title = {Jordan{\textendash}H\"older composition series of regular $(a,b)$-modules},
journal = {Annales Polonici Mathematici},
pages = {261--270},
publisher = {mathdoc},
volume = {120},
number = {3},
year = {2017},
doi = {10.4064/ap4096-11-2017},
language = {fr},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap4096-11-2017/}
}
TY - JOUR AU - Piotr P. Karwasz TI - Jordan–Hölder composition series of regular $(a,b)$-modules JO - Annales Polonici Mathematici PY - 2017 SP - 261 EP - 270 VL - 120 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/ap4096-11-2017/ DO - 10.4064/ap4096-11-2017 LA - fr ID - 10_4064_ap4096_11_2017 ER -
Piotr P. Karwasz. Jordan–Hölder composition series of regular $(a,b)$-modules. Annales Polonici Mathematici, Tome 120 (2017) no. 3, pp. 261-270. doi: 10.4064/ap4096-11-2017
Cité par Sources :