On some global solutions to 3d incompressible heat-conducting motions
Annales Polonici Mathematici, Tome 119 (2017) no. 1, pp. 79-94.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We consider stability of solutions to stationary Navier–Stokes equations coupled with the heat equation in a set of solutions to the corresponding nonstationary system. The coupling is such that in the right-hand side of the Navier–Stokes equations there is a power function of temperature and in the equation for temperature there is a viscous dissipation term. We consider the non-slip boundary condition for velocity and the Dirichlet boundary condition for temperature. Moreover, the existence of a global strong-weak solution which remains close to the stationary solution for all time is proved.
DOI : 10.4064/ap4048-2-2017
Keywords: consider stability solutions stationary navier stokes equations coupled heat equation set solutions corresponding nonstationary system coupling right hand side navier stokes equations there power function temperature equation temperature there viscous dissipation term consider non slip boundary condition velocity dirichlet boundary condition temperature moreover existence global strong weak solution which remains close stationary solution time proved

Ewa Zadrzyńska 1 ; Wojciech M. Zajączkowski 2

1 Faculty of Mathematics and Information Sciences Warsaw University of Technology Koszykowa 75 00-662 Warszawa, Poland
2 Institute of Mathematics Polish Academy of Sciences Śniadeckich 8 00-656 Warszawa, Poland and Institute of Mathematics and Cryptology Cybernetics Faculty Military University of Technology Kaliskiego 2 00-908 Warszawa, Poland
@article{10_4064_ap4048_2_2017,
     author = {Ewa Zadrzy\'nska and Wojciech M. Zaj\k{a}czkowski},
     title = {On some global solutions to 3d incompressible heat-conducting motions},
     journal = {Annales Polonici Mathematici},
     pages = {79--94},
     publisher = {mathdoc},
     volume = {119},
     number = {1},
     year = {2017},
     doi = {10.4064/ap4048-2-2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ap4048-2-2017/}
}
TY  - JOUR
AU  - Ewa Zadrzyńska
AU  - Wojciech M. Zajączkowski
TI  - On some global solutions to 3d incompressible heat-conducting motions
JO  - Annales Polonici Mathematici
PY  - 2017
SP  - 79
EP  - 94
VL  - 119
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ap4048-2-2017/
DO  - 10.4064/ap4048-2-2017
LA  - en
ID  - 10_4064_ap4048_2_2017
ER  - 
%0 Journal Article
%A Ewa Zadrzyńska
%A Wojciech M. Zajączkowski
%T On some global solutions to 3d incompressible heat-conducting motions
%J Annales Polonici Mathematici
%D 2017
%P 79-94
%V 119
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ap4048-2-2017/
%R 10.4064/ap4048-2-2017
%G en
%F 10_4064_ap4048_2_2017
Ewa Zadrzyńska; Wojciech M. Zajączkowski. On some global solutions to 3d incompressible heat-conducting motions. Annales Polonici Mathematici, Tome 119 (2017) no. 1, pp. 79-94. doi : 10.4064/ap4048-2-2017. http://geodesic.mathdoc.fr/articles/10.4064/ap4048-2-2017/

Cité par Sources :