Global existence and asymptotic behavior for the full compressible Euler equations with damping in $\mathbb R^3$
Annales Polonici Mathematici, Tome 119 (2017) no. 2, pp. 147-163.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We are concerned with the global existence and asymptotic behavior of classical solutions to the Cauchy problem for the full compressible Euler equations with damping in $\mathbb R^3$. We prove the global existence of the classical solutions by the delicate energy method under the condition that the initial data are close to the constant equilibrium state in $H^3$-framework. An energy estimate on $\| \nabla u\| _{L^1((0,t);\tilde{B}^{0,{3/2}}_{2,1}(\mathbb R^3))}$ enables us to close the energy estimates for the non-dissipative entropy. Moreover, the optimal time decay rate is also established.
DOI : 10.4064/ap4020-2-2017
Keywords: concerned global existence asymptotic behavior classical solutions cauchy problem full compressible euler equations damping mathbb prove global existence classical solutions delicate energy method under condition initial close constant equilibrium state framework energy estimate nabla tilde mathbb enables close energy estimates non dissipative entropy moreover optimal time decay rate established

Guochun Wu 1 ; Zhensheng Gao 1

1 School of Mathematical Sciences Huaqiao University Quanzhou 362021, China
@article{10_4064_ap4020_2_2017,
     author = {Guochun Wu and Zhensheng Gao},
     title = {Global existence and asymptotic behavior for the full compressible {Euler} equations with damping in $\mathbb R^3$},
     journal = {Annales Polonici Mathematici},
     pages = {147--163},
     publisher = {mathdoc},
     volume = {119},
     number = {2},
     year = {2017},
     doi = {10.4064/ap4020-2-2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ap4020-2-2017/}
}
TY  - JOUR
AU  - Guochun Wu
AU  - Zhensheng Gao
TI  - Global existence and asymptotic behavior for the full compressible Euler equations with damping in $\mathbb R^3$
JO  - Annales Polonici Mathematici
PY  - 2017
SP  - 147
EP  - 163
VL  - 119
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ap4020-2-2017/
DO  - 10.4064/ap4020-2-2017
LA  - en
ID  - 10_4064_ap4020_2_2017
ER  - 
%0 Journal Article
%A Guochun Wu
%A Zhensheng Gao
%T Global existence and asymptotic behavior for the full compressible Euler equations with damping in $\mathbb R^3$
%J Annales Polonici Mathematici
%D 2017
%P 147-163
%V 119
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ap4020-2-2017/
%R 10.4064/ap4020-2-2017
%G en
%F 10_4064_ap4020_2_2017
Guochun Wu; Zhensheng Gao. Global existence and asymptotic behavior for the full compressible Euler equations with damping in $\mathbb R^3$. Annales Polonici Mathematici, Tome 119 (2017) no. 2, pp. 147-163. doi : 10.4064/ap4020-2-2017. http://geodesic.mathdoc.fr/articles/10.4064/ap4020-2-2017/

Cité par Sources :