Existence and analytic regularity of certain solutions for the generalized BBM-Burgers equation in $\mathbb R^n$
Annales Polonici Mathematici, Tome 119 (2017) no. 1, pp. 69-78
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We study the existence and analytic regularity of local solutions for the generalized Benjamin–Bona–Mahony–Burgers equation in $\mathbb R^n$. The results are obtained by the convolution method and the Fourier transformation method combined with the fixed point method.
Keywords:
study existence analytic regularity local solutions generalized benjamin bona mahony burgers equation mathbb results obtained convolution method fourier transformation method combined fixed point method
Affiliations des auteurs :
Guochun Wu 1
@article{10_4064_ap3995_3_2017,
author = {Guochun Wu},
title = {Existence and analytic regularity of certain solutions for the generalized {BBM-Burgers} equation in $\mathbb R^n$},
journal = {Annales Polonici Mathematici},
pages = {69--78},
year = {2017},
volume = {119},
number = {1},
doi = {10.4064/ap3995-3-2017},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap3995-3-2017/}
}
TY - JOUR AU - Guochun Wu TI - Existence and analytic regularity of certain solutions for the generalized BBM-Burgers equation in $\mathbb R^n$ JO - Annales Polonici Mathematici PY - 2017 SP - 69 EP - 78 VL - 119 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.4064/ap3995-3-2017/ DO - 10.4064/ap3995-3-2017 LA - en ID - 10_4064_ap3995_3_2017 ER -
%0 Journal Article %A Guochun Wu %T Existence and analytic regularity of certain solutions for the generalized BBM-Burgers equation in $\mathbb R^n$ %J Annales Polonici Mathematici %D 2017 %P 69-78 %V 119 %N 1 %U http://geodesic.mathdoc.fr/articles/10.4064/ap3995-3-2017/ %R 10.4064/ap3995-3-2017 %G en %F 10_4064_ap3995_3_2017
Guochun Wu. Existence and analytic regularity of certain solutions for the generalized BBM-Burgers equation in $\mathbb R^n$. Annales Polonici Mathematici, Tome 119 (2017) no. 1, pp. 69-78. doi: 10.4064/ap3995-3-2017
Cité par Sources :