On delta $m$-subharmonic functions
Annales Polonici Mathematici, Tome 118 (2016) no. 1, pp. 25-49
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
Let $p \gt 0$, and let $\mathcal {E}_{p,m}$ be the cone of negative $m$-subharmonic functions with finite $m$-pluricomplex $p$-energy. We will define a quasi-norm on the vector space $\delta \mathcal {E}_{p,m}=\mathcal {E}_{p,m}-\mathcal {E}_{p,m}$ and prove that this vector space with this quasi-norm is a quasi-Banach space. Furthermore, we characterize its topological dual.
Keywords:
mathcal cone negative m subharmonic functions finite m pluricomplex p energy define quasi norm vector space delta mathcal mathcal mathcal prove vector space quasi norm quasi banach space furthermore characterize its topological dual
Affiliations des auteurs :
Van Thien Nguyen 1
@article{10_4064_ap3959_9_2916,
author = {Van Thien Nguyen},
title = {On delta $m$-subharmonic functions},
journal = {Annales Polonici Mathematici},
pages = {25--49},
year = {2016},
volume = {118},
number = {1},
doi = {10.4064/ap3959-9-2916},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap3959-9-2916/}
}
Van Thien Nguyen. On delta $m$-subharmonic functions. Annales Polonici Mathematici, Tome 118 (2016) no. 1, pp. 25-49. doi: 10.4064/ap3959-9-2916
Cité par Sources :