On delta $m$-subharmonic functions
Annales Polonici Mathematici, Tome 118 (2016) no. 1, pp. 25-49.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $p \gt 0$, and let $\mathcal {E}_{p,m}$ be the cone of negative $m$-subharmonic functions with finite $m$-pluricomplex $p$-energy. We will define a quasi-norm on the vector space $\delta \mathcal {E}_{p,m}=\mathcal {E}_{p,m}-\mathcal {E}_{p,m}$ and prove that this vector space with this quasi-norm is a quasi-Banach space. Furthermore, we characterize its topological dual.
DOI : 10.4064/ap3959-9-2916
Keywords: mathcal cone negative m subharmonic functions finite m pluricomplex p energy define quasi norm vector space delta mathcal mathcal mathcal prove vector space quasi norm quasi banach space furthermore characterize its topological dual

Van Thien Nguyen 1

1 Institute of Mathematics Jagiellonian University Łojasiewicza 6 30-348 Kraków, Poland
@article{10_4064_ap3959_9_2916,
     author = {Van Thien Nguyen},
     title = {On delta $m$-subharmonic functions},
     journal = {Annales Polonici Mathematici},
     pages = {25--49},
     publisher = {mathdoc},
     volume = {118},
     number = {1},
     year = {2016},
     doi = {10.4064/ap3959-9-2916},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ap3959-9-2916/}
}
TY  - JOUR
AU  - Van Thien Nguyen
TI  - On delta $m$-subharmonic functions
JO  - Annales Polonici Mathematici
PY  - 2016
SP  - 25
EP  - 49
VL  - 118
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ap3959-9-2916/
DO  - 10.4064/ap3959-9-2916
LA  - en
ID  - 10_4064_ap3959_9_2916
ER  - 
%0 Journal Article
%A Van Thien Nguyen
%T On delta $m$-subharmonic functions
%J Annales Polonici Mathematici
%D 2016
%P 25-49
%V 118
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ap3959-9-2916/
%R 10.4064/ap3959-9-2916
%G en
%F 10_4064_ap3959_9_2916
Van Thien Nguyen. On delta $m$-subharmonic functions. Annales Polonici Mathematici, Tome 118 (2016) no. 1, pp. 25-49. doi : 10.4064/ap3959-9-2916. http://geodesic.mathdoc.fr/articles/10.4064/ap3959-9-2916/

Cité par Sources :