A logarithmically improved regularity criterion for the $3$D MHD system involving the velocity field in homogeneous Besov spaces
Annales Polonici Mathematici, Tome 118 (2016) no. 1, pp. 51-57
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We consider a regularity criterion for the $3$D MHD equations. It is proved that if \[ \int _0^T\frac {\|\boldsymbol {u}(\tau )\| _{\dot B^r_{\infty ,\infty }}^{2/(1+r)}}{1+\ln(e+\| \boldsymbol {u}(\tau )\| _{\dot B^r_{\infty ,\infty }})}\,d \tau \lt \infty \] for some $0 \lt r \lt 1$, then the solution is actually smooth on $(0,T)$.
Keywords:
consider regularity criterion mhd equations proved int frac boldsymbol tau dot infty infty boldsymbol tau dot infty infty tau infty solution actually smooth
Affiliations des auteurs :
Zujin Zhang 1
@article{10_4064_ap3952_9_2016,
author = {Zujin Zhang},
title = {A logarithmically improved regularity criterion for the $3${D} {MHD} system involving the velocity field in homogeneous {Besov} spaces},
journal = {Annales Polonici Mathematici},
pages = {51--57},
year = {2016},
volume = {118},
number = {1},
doi = {10.4064/ap3952-9-2016},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap3952-9-2016/}
}
TY - JOUR AU - Zujin Zhang TI - A logarithmically improved regularity criterion for the $3$D MHD system involving the velocity field in homogeneous Besov spaces JO - Annales Polonici Mathematici PY - 2016 SP - 51 EP - 57 VL - 118 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.4064/ap3952-9-2016/ DO - 10.4064/ap3952-9-2016 LA - en ID - 10_4064_ap3952_9_2016 ER -
%0 Journal Article %A Zujin Zhang %T A logarithmically improved regularity criterion for the $3$D MHD system involving the velocity field in homogeneous Besov spaces %J Annales Polonici Mathematici %D 2016 %P 51-57 %V 118 %N 1 %U http://geodesic.mathdoc.fr/articles/10.4064/ap3952-9-2016/ %R 10.4064/ap3952-9-2016 %G en %F 10_4064_ap3952_9_2016
Zujin Zhang. A logarithmically improved regularity criterion for the $3$D MHD system involving the velocity field in homogeneous Besov spaces. Annales Polonici Mathematici, Tome 118 (2016) no. 1, pp. 51-57. doi: 10.4064/ap3952-9-2016
Cité par Sources :