Michael’s theorem for Lipschitz cells in o-minimal structures
Annales Polonici Mathematici, Tome 117 (2016) no. 2, pp. 101-107
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
A version of Michael’s theorem for multivalued mappings definable in o-minimal structures with $M$-Lipschitz cell values ($M$ a common constant) is proven. Uniform equi-$LC^n$ property for such families of cells is checked. An example is given showing that the assumption about the common Lipschitz constant cannot be omitted.
Keywords:
version michael theorem multivalued mappings definable o minimal structures m lipschitz cell values common constant proven uniform equi lc property families cells checked example given showing assumption about common lipschitz constant cannot omitted
Affiliations des auteurs :
Małgorzata Czapla 1 ; Wiesław Pawłucki 1
@article{10_4064_ap3931_7_2016,
author = {Ma{\l}gorzata Czapla and Wies{\l}aw Paw{\l}ucki},
title = {Michael{\textquoteright}s theorem for {Lipschitz} cells in o-minimal structures},
journal = {Annales Polonici Mathematici},
pages = {101--107},
publisher = {mathdoc},
volume = {117},
number = {2},
year = {2016},
doi = {10.4064/ap3931-7-2016},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap3931-7-2016/}
}
TY - JOUR AU - Małgorzata Czapla AU - Wiesław Pawłucki TI - Michael’s theorem for Lipschitz cells in o-minimal structures JO - Annales Polonici Mathematici PY - 2016 SP - 101 EP - 107 VL - 117 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/ap3931-7-2016/ DO - 10.4064/ap3931-7-2016 LA - en ID - 10_4064_ap3931_7_2016 ER -
%0 Journal Article %A Małgorzata Czapla %A Wiesław Pawłucki %T Michael’s theorem for Lipschitz cells in o-minimal structures %J Annales Polonici Mathematici %D 2016 %P 101-107 %V 117 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/ap3931-7-2016/ %R 10.4064/ap3931-7-2016 %G en %F 10_4064_ap3931_7_2016
Małgorzata Czapla; Wiesław Pawłucki. Michael’s theorem for Lipschitz cells in o-minimal structures. Annales Polonici Mathematici, Tome 117 (2016) no. 2, pp. 101-107. doi: 10.4064/ap3931-7-2016
Cité par Sources :