Multiple slowly oscillating periodic solutions for $x’(t) = f(x(t-1))$ with negative feedback
Annales Polonici Mathematici, Tome 118 (2016) no. 2-3, pp. 113-140
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We consider the prototype equation
\begin{equation*}
x^{\prime}(t)=f(x(t-1))
\end{equation*}
for delayed negative feedback. We review known results on uniqueness and nonuniqueness of slowly oscillating periodic solutions, and present some new results and examples.
Keywords:
consider prototype equation begin equation* prime t end equation* delayed negative feedback review known results uniqueness nonuniqueness slowly oscillating periodic solutions present results examples
Affiliations des auteurs :
Benjamin Kennedy 1 ; Eugen Stumpf 2
@article{10_4064_ap3899_10_2016,
author = {Benjamin Kennedy and Eugen Stumpf},
title = {Multiple slowly oscillating periodic solutions for $x{\textquoteright}(t) = f(x(t-1))$ with negative feedback},
journal = {Annales Polonici Mathematici},
pages = {113--140},
year = {2016},
volume = {118},
number = {2-3},
doi = {10.4064/ap3899-10-2016},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap3899-10-2016/}
}
TY - JOUR AU - Benjamin Kennedy AU - Eugen Stumpf TI - Multiple slowly oscillating periodic solutions for $x’(t) = f(x(t-1))$ with negative feedback JO - Annales Polonici Mathematici PY - 2016 SP - 113 EP - 140 VL - 118 IS - 2-3 UR - http://geodesic.mathdoc.fr/articles/10.4064/ap3899-10-2016/ DO - 10.4064/ap3899-10-2016 LA - en ID - 10_4064_ap3899_10_2016 ER -
%0 Journal Article %A Benjamin Kennedy %A Eugen Stumpf %T Multiple slowly oscillating periodic solutions for $x’(t) = f(x(t-1))$ with negative feedback %J Annales Polonici Mathematici %D 2016 %P 113-140 %V 118 %N 2-3 %U http://geodesic.mathdoc.fr/articles/10.4064/ap3899-10-2016/ %R 10.4064/ap3899-10-2016 %G en %F 10_4064_ap3899_10_2016
Benjamin Kennedy; Eugen Stumpf. Multiple slowly oscillating periodic solutions for $x’(t) = f(x(t-1))$ with negative feedback. Annales Polonici Mathematici, Tome 118 (2016) no. 2-3, pp. 113-140. doi: 10.4064/ap3899-10-2016
Cité par Sources :