K3 fibrations on rigid double octic Calabi–Yau threefolds
Annales Polonici Mathematici, Tome 116 (2016) no. 3, pp. 229-241.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We give a description of the Picard group of double octic Calabi–Yau threefolds using a K3 fibration defined by a singular line of the branch octic. In particular, we show that the group is generated by the Picard group of a generic fibre and the subgroup generated by the components of the reducible fibres.
DOI : 10.4064/ap3872-4-2016
Keywords: description picard group double octic calabi yau threefolds using fibration defined singular line branch octic particular group generated picard group generic fibre subgroup generated components reducible fibres

Paweł Borówka 1

1 Institute of Mathematics Jagiellonian University Kraków Łojasiewicza 6 30-348 Kraków, Poland
@article{10_4064_ap3872_4_2016,
     author = {Pawe{\l} Bor\'owka},
     title = {K3 fibrations on rigid double octic {Calabi{\textendash}Yau} threefolds},
     journal = {Annales Polonici Mathematici},
     pages = {229--241},
     publisher = {mathdoc},
     volume = {116},
     number = {3},
     year = {2016},
     doi = {10.4064/ap3872-4-2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ap3872-4-2016/}
}
TY  - JOUR
AU  - Paweł Borówka
TI  - K3 fibrations on rigid double octic Calabi–Yau threefolds
JO  - Annales Polonici Mathematici
PY  - 2016
SP  - 229
EP  - 241
VL  - 116
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ap3872-4-2016/
DO  - 10.4064/ap3872-4-2016
LA  - en
ID  - 10_4064_ap3872_4_2016
ER  - 
%0 Journal Article
%A Paweł Borówka
%T K3 fibrations on rigid double octic Calabi–Yau threefolds
%J Annales Polonici Mathematici
%D 2016
%P 229-241
%V 116
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ap3872-4-2016/
%R 10.4064/ap3872-4-2016
%G en
%F 10_4064_ap3872_4_2016
Paweł Borówka. K3 fibrations on rigid double octic Calabi–Yau threefolds. Annales Polonici Mathematici, Tome 116 (2016) no. 3, pp. 229-241. doi : 10.4064/ap3872-4-2016. http://geodesic.mathdoc.fr/articles/10.4064/ap3872-4-2016/

Cité par Sources :