The Besov capacity in metric spaces
Annales Polonici Mathematici, Tome 117 (2016) no. 1, pp. 59-78
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We study a capacity theory based on a definition of Hajłasz–Besov functions. We prove several properties of this capacity in the general setting of a metric space equipped with a doubling measure. The main results of the paper are lower bound and upper bound estimates for the capacity in terms of a modified Netrusov–Hausdorff content. Important tools are $\gamma $-medians, for which we also prove a new version of a Poincaré type inequality.
Keywords:
study capacity theory based definition haj asz besov functions prove several properties capacity general setting metric space equipped doubling measure main results paper lower bound upper bound estimates capacity terms modified netrusov hausdorff content important tools gamma medians which prove version poincar type inequality
Affiliations des auteurs :
Juho Nuutinen 1
@article{10_4064_ap3843_4_2016,
author = {Juho Nuutinen},
title = {The {Besov} capacity in metric spaces},
journal = {Annales Polonici Mathematici},
pages = {59--78},
publisher = {mathdoc},
volume = {117},
number = {1},
year = {2016},
doi = {10.4064/ap3843-4-2016},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap3843-4-2016/}
}
Juho Nuutinen. The Besov capacity in metric spaces. Annales Polonici Mathematici, Tome 117 (2016) no. 1, pp. 59-78. doi: 10.4064/ap3843-4-2016
Cité par Sources :