Existence of a positive ground state solution for a Kirchhoff type problem involving a critical exponent
Annales Polonici Mathematici, Tome 117 (2016) no. 2, pp. 163-179.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We consider the following Kirchhoff type problem involving a critical nonlinearity: \begin{equation*} \begin{cases} \displaystyle-\bigg[a+b\bigg(\int_{\Omega}|\nabla u|^{2}\,dx\bigg)^{m}\bigg]\Delta u= f(x,u)+|u|^{2^{\ast}-2}u \text{in $\Omega$,} \\ u=0 \text{on $\partial\Omega$,} \end{cases} \end{equation*} where $\Omega\subset \mathbb{R}^{N}$ $(N\geq3)$ is a smooth bounded domain with smooth boundary $\partial\Omega$, $a \gt 0$, $b\geq 0,$ and $0 \lt m \lt {2}/({N-2}) $. Under appropriate assumptions on $f$, we show the existence of a positive ground state solution via the variational method.
DOI : 10.4064/ap3783-1-2016
Keywords: consider following kirchhoff type problem involving critical nonlinearity begin equation* begin cases displaystyle bigg bigg int omega nabla bigg bigg delta ast text omega text partial omega end cases end equation* where omega subset mathbb geq smooth bounded domain smooth boundary partial omega geq n under appropriate assumptions existence positive ground state solution via variational method

Lan Zeng 1 ; Chun Lei Tang 1

1 School of Mathematics and Statistics Southwest University 400715 Chongqing, People’s Republic of China
@article{10_4064_ap3783_1_2016,
     author = {Lan Zeng and Chun Lei Tang},
     title = {Existence of a positive ground state solution for a {Kirchhoff} type problem involving a critical exponent},
     journal = {Annales Polonici Mathematici},
     pages = {163--179},
     publisher = {mathdoc},
     volume = {117},
     number = {2},
     year = {2016},
     doi = {10.4064/ap3783-1-2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ap3783-1-2016/}
}
TY  - JOUR
AU  - Lan Zeng
AU  - Chun Lei Tang
TI  - Existence of a positive ground state solution for a Kirchhoff type problem involving a critical exponent
JO  - Annales Polonici Mathematici
PY  - 2016
SP  - 163
EP  - 179
VL  - 117
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ap3783-1-2016/
DO  - 10.4064/ap3783-1-2016
LA  - en
ID  - 10_4064_ap3783_1_2016
ER  - 
%0 Journal Article
%A Lan Zeng
%A Chun Lei Tang
%T Existence of a positive ground state solution for a Kirchhoff type problem involving a critical exponent
%J Annales Polonici Mathematici
%D 2016
%P 163-179
%V 117
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ap3783-1-2016/
%R 10.4064/ap3783-1-2016
%G en
%F 10_4064_ap3783_1_2016
Lan Zeng; Chun Lei Tang. Existence of a positive ground state solution for a Kirchhoff type problem involving a critical exponent. Annales Polonici Mathematici, Tome 117 (2016) no. 2, pp. 163-179. doi : 10.4064/ap3783-1-2016. http://geodesic.mathdoc.fr/articles/10.4064/ap3783-1-2016/

Cité par Sources :