Two new estimates for eigenvalues of Dirac operators
Annales Polonici Mathematici, Tome 117 (2016) no. 2, pp. 109-126
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We establish lower and upper eigenvalue estimates for Dirac operators in different settings, a new Kirchberg type estimate for the first eigenvalue of the Dirac operator on a compact Kähler spin manifold in terms of the energy momentum tensor, and an upper bound for the smallest eigenvalues of the twisted Dirac operator on Legendrian submanifolds of Sasakian manifolds. The sharpness of those estimates is also discussed.
Keywords:
establish lower upper eigenvalue estimates dirac operators different settings kirchberg type estimate first eigenvalue dirac operator compact hler spin manifold terms energy momentum tensor upper bound smallest eigenvalues twisted dirac operator legendrian submanifolds sasakian manifolds sharpness those estimates discussed
Affiliations des auteurs :
Wenmin Gong 1 ; Guangcun Lu 2
@article{10_4064_ap3779_2_2016,
author = {Wenmin Gong and Guangcun Lu},
title = {Two new estimates for eigenvalues of {Dirac} operators},
journal = {Annales Polonici Mathematici},
pages = {109--126},
publisher = {mathdoc},
volume = {117},
number = {2},
year = {2016},
doi = {10.4064/ap3779-2-2016},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap3779-2-2016/}
}
TY - JOUR AU - Wenmin Gong AU - Guangcun Lu TI - Two new estimates for eigenvalues of Dirac operators JO - Annales Polonici Mathematici PY - 2016 SP - 109 EP - 126 VL - 117 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/ap3779-2-2016/ DO - 10.4064/ap3779-2-2016 LA - en ID - 10_4064_ap3779_2_2016 ER -
Wenmin Gong; Guangcun Lu. Two new estimates for eigenvalues of Dirac operators. Annales Polonici Mathematici, Tome 117 (2016) no. 2, pp. 109-126. doi: 10.4064/ap3779-2-2016
Cité par Sources :