On the Bergman distance on model domains in $\mathbb C^n$
Annales Polonici Mathematici, Tome 116 (2016) no. 1, pp. 1-36
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $P$ be a real-valued and weighted
homogeneous plurisubharmonic polynomial in $\mathbb C^{n-1}$ and let $D$ denote
the ‶model domain″ $\{z \in
\mathbb C^n\mid r(z):= \mathop{\rm Re} z_1 + P(z') 0\}$. We prove a lower estimate on the Bergman distance
of $D$ if $P$ is assumed to be strongly plurisubharmonic away from the coordinate axes.
Keywords:
real valued weighted homogeneous plurisubharmonic polynomial mathbb n denote model domain mathbb mid mathop prove lower estimate bergman distance assumed strongly plurisubharmonic away coordinate axes
Affiliations des auteurs :
Gregor Herbort 1
@article{10_4064_ap3752_12_2015,
author = {Gregor Herbort},
title = {On the {Bergman} distance on model domains in $\mathbb C^n$},
journal = {Annales Polonici Mathematici},
pages = {1--36},
publisher = {mathdoc},
volume = {116},
number = {1},
year = {2016},
doi = {10.4064/ap3752-12-2015},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap3752-12-2015/}
}
TY - JOUR AU - Gregor Herbort TI - On the Bergman distance on model domains in $\mathbb C^n$ JO - Annales Polonici Mathematici PY - 2016 SP - 1 EP - 36 VL - 116 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/ap3752-12-2015/ DO - 10.4064/ap3752-12-2015 LA - en ID - 10_4064_ap3752_12_2015 ER -
Gregor Herbort. On the Bergman distance on model domains in $\mathbb C^n$. Annales Polonici Mathematici, Tome 116 (2016) no. 1, pp. 1-36. doi: 10.4064/ap3752-12-2015
Cité par Sources :