On the Bergman distance on model domains in $\mathbb C^n$
Annales Polonici Mathematici, Tome 116 (2016) no. 1, pp. 1-36.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $P$ be a real-valued and weighted homogeneous plurisubharmonic polynomial in $\mathbb C^{n-1}$ and let $D$ denote the ‶model domain″ $\{z \in \mathbb C^n\mid r(z):= \mathop{\rm Re} z_1 + P(z') 0\}$. We prove a lower estimate on the Bergman distance of $D$ if $P$ is assumed to be strongly plurisubharmonic away from the coordinate axes.
DOI : 10.4064/ap3752-12-2015
Keywords: real valued weighted homogeneous plurisubharmonic polynomial mathbb n denote model domain mathbb mid mathop prove lower estimate bergman distance assumed strongly plurisubharmonic away coordinate axes

Gregor Herbort 1

1 Fachbereich Mathematik und Naturwissenschaften Bergische Universität Wuppertal D-42097 Wuppertal, Germany
@article{10_4064_ap3752_12_2015,
     author = {Gregor Herbort},
     title = {On the {Bergman} distance on model domains in $\mathbb C^n$},
     journal = {Annales Polonici Mathematici},
     pages = {1--36},
     publisher = {mathdoc},
     volume = {116},
     number = {1},
     year = {2016},
     doi = {10.4064/ap3752-12-2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ap3752-12-2015/}
}
TY  - JOUR
AU  - Gregor Herbort
TI  - On the Bergman distance on model domains in $\mathbb C^n$
JO  - Annales Polonici Mathematici
PY  - 2016
SP  - 1
EP  - 36
VL  - 116
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ap3752-12-2015/
DO  - 10.4064/ap3752-12-2015
LA  - en
ID  - 10_4064_ap3752_12_2015
ER  - 
%0 Journal Article
%A Gregor Herbort
%T On the Bergman distance on model domains in $\mathbb C^n$
%J Annales Polonici Mathematici
%D 2016
%P 1-36
%V 116
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ap3752-12-2015/
%R 10.4064/ap3752-12-2015
%G en
%F 10_4064_ap3752_12_2015
Gregor Herbort. On the Bergman distance on model domains in $\mathbb C^n$. Annales Polonici Mathematici, Tome 116 (2016) no. 1, pp. 1-36. doi : 10.4064/ap3752-12-2015. http://geodesic.mathdoc.fr/articles/10.4064/ap3752-12-2015/

Cité par Sources :