Certain contact metrics satisfying the Miao–Tam critical condition
Annales Polonici Mathematici, Tome 116 (2016) no. 3, pp. 263-271
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We study certain contact metrics satisfying the Miao–Tam critical condition. First, we prove that a complete $K$-contact metric satisfying the Miao–Tam critical condition is isometric to the unit sphere $S^{2n+1}$. Next, we study $(\kappa , \mu )$-contact metrics satisfying the Miao–Tam critical condition.
Keywords:
study certain contact metrics satisfying miao tam critical condition first prove complete k contact metric satisfying miao tam critical condition isometric unit sphere study kappa contact metrics satisfying miao tam critical condition
Affiliations des auteurs :
Dhriti Sundar Patra 1 ; Amalendu Ghosh 2
@article{10_4064_ap3704_11_2015,
author = {Dhriti Sundar Patra and Amalendu Ghosh},
title = {Certain contact metrics satisfying the {Miao{\textendash}Tam} critical condition},
journal = {Annales Polonici Mathematici},
pages = {263--271},
publisher = {mathdoc},
volume = {116},
number = {3},
year = {2016},
doi = {10.4064/ap3704-11-2015},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap3704-11-2015/}
}
TY - JOUR AU - Dhriti Sundar Patra AU - Amalendu Ghosh TI - Certain contact metrics satisfying the Miao–Tam critical condition JO - Annales Polonici Mathematici PY - 2016 SP - 263 EP - 271 VL - 116 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/ap3704-11-2015/ DO - 10.4064/ap3704-11-2015 LA - en ID - 10_4064_ap3704_11_2015 ER -
%0 Journal Article %A Dhriti Sundar Patra %A Amalendu Ghosh %T Certain contact metrics satisfying the Miao–Tam critical condition %J Annales Polonici Mathematici %D 2016 %P 263-271 %V 116 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/ap3704-11-2015/ %R 10.4064/ap3704-11-2015 %G en %F 10_4064_ap3704_11_2015
Dhriti Sundar Patra; Amalendu Ghosh. Certain contact metrics satisfying the Miao–Tam critical condition. Annales Polonici Mathematici, Tome 116 (2016) no. 3, pp. 263-271. doi: 10.4064/ap3704-11-2015
Cité par Sources :