Periodic solutions to evolution equations: existence, conditional stability and admissibility of function spaces
Annales Polonici Mathematici, Tome 116 (2016) no. 2, pp. 173-195
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We prove the existence and conditional stability of periodic
solutions to semilinear evolution equations of the form
$\dot{u}=A(t)u+g(t,u(t)),$ where the operator-valued function
$t\mapsto A(t)$ is $1$-periodic, and the operator $g(t,x)$ is
$1$-periodic with respect to $t$ for each fixed $x$ and satisfies the $\varphi$-Lipschitz condition $ \|g(t,x_1)-g(t,x_2)\|\leq
\varphi(t)\|x_1-x_2\|$ for $\varphi(t)$ being a real and positive
function which belongs to an admissible function space. We then apply
the results to study the existence, uniqueness and conditional
stability of periodic solutions to the above semilinear equation in
the case that the family $(A(t))_{t\geq 0}$ generates an
evolution family having an exponential dichotomy. We also prove the
existence of a local stable manifold near the periodic solution in
that case.
Keywords:
prove existence conditional stability periodic solutions semilinear evolution equations form dot g where operator valued function mapsto periodic operator periodic respect each fixed satisfies varphi lipschitz condition g leq varphi x varphi being real positive function which belongs admissible function space apply results study existence uniqueness conditional stability periodic solutions above semilinear equation the family geq generates evolution family having exponential dichotomy prove existence local stable manifold near periodic solution
Affiliations des auteurs :
Nguyen Thieu Huy 1 ; Ngo Quy Dang 2
@article{10_4064_ap3677_10_2015,
author = {Nguyen Thieu Huy and Ngo Quy Dang},
title = {Periodic solutions to evolution equations: existence, conditional stability and admissibility of function spaces},
journal = {Annales Polonici Mathematici},
pages = {173--195},
publisher = {mathdoc},
volume = {116},
number = {2},
year = {2016},
doi = {10.4064/ap3677-10-2015},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap3677-10-2015/}
}
TY - JOUR AU - Nguyen Thieu Huy AU - Ngo Quy Dang TI - Periodic solutions to evolution equations: existence, conditional stability and admissibility of function spaces JO - Annales Polonici Mathematici PY - 2016 SP - 173 EP - 195 VL - 116 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/ap3677-10-2015/ DO - 10.4064/ap3677-10-2015 LA - en ID - 10_4064_ap3677_10_2015 ER -
%0 Journal Article %A Nguyen Thieu Huy %A Ngo Quy Dang %T Periodic solutions to evolution equations: existence, conditional stability and admissibility of function spaces %J Annales Polonici Mathematici %D 2016 %P 173-195 %V 116 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/ap3677-10-2015/ %R 10.4064/ap3677-10-2015 %G en %F 10_4064_ap3677_10_2015
Nguyen Thieu Huy; Ngo Quy Dang. Periodic solutions to evolution equations: existence, conditional stability and admissibility of function spaces. Annales Polonici Mathematici, Tome 116 (2016) no. 2, pp. 173-195. doi: 10.4064/ap3677-10-2015
Cité par Sources :