1School of Applied Mathematics and Informatics Hanoi University of Science and Technology Vien Toan ung dung va Tin hoc Dai hoc Bach khoa Hanoi 1 Dai Co Viet Hanoi, Vietnam 2Thai Binh College of Education and Training Cao Dang Su Pham Thai Binh Chu Van An Quang Trung Thai Binh, Vietnam
Annales Polonici Mathematici, Tome 116 (2016) no. 2, pp. 173-195
We prove the existence and conditional stability of periodic
solutions to semilinear evolution equations of the form
$\dot{u}=A(t)u+g(t,u(t)),$ where the operator-valued function
$t\mapsto A(t)$ is $1$-periodic, and the operator $g(t,x)$ is
$1$-periodic with respect to $t$ for each fixed $x$ and satisfies the $\varphi$-Lipschitz condition $ \|g(t,x_1)-g(t,x_2)\|\leq
\varphi(t)\|x_1-x_2\|$ for $\varphi(t)$ being a real and positive
function which belongs to an admissible function space. We then apply
the results to study the existence, uniqueness and conditional
stability of periodic solutions to the above semilinear equation in
the case that the family $(A(t))_{t\geq 0}$ generates an
evolution family having an exponential dichotomy. We also prove the
existence of a local stable manifold near the periodic solution in
that case.
Keywords:
prove existence conditional stability periodic solutions semilinear evolution equations form dot g where operator valued function mapsto periodic operator periodic respect each fixed satisfies varphi lipschitz condition g leq varphi x varphi being real positive function which belongs admissible function space apply results study existence uniqueness conditional stability periodic solutions above semilinear equation the family geq generates evolution family having exponential dichotomy prove existence local stable manifold near periodic solution
1
School of Applied Mathematics and Informatics Hanoi University of Science and Technology Vien Toan ung dung va Tin hoc Dai hoc Bach khoa Hanoi 1 Dai Co Viet Hanoi, Vietnam
2
Thai Binh College of Education and Training Cao Dang Su Pham Thai Binh Chu Van An Quang Trung Thai Binh, Vietnam
@article{10_4064_ap3677_10_2015,
author = {Nguyen Thieu Huy and Ngo Quy Dang},
title = {Periodic solutions to evolution equations: existence, conditional stability and admissibility of function spaces},
journal = {Annales Polonici Mathematici},
pages = {173--195},
year = {2016},
volume = {116},
number = {2},
doi = {10.4064/ap3677-10-2015},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap3677-10-2015/}
}
TY - JOUR
AU - Nguyen Thieu Huy
AU - Ngo Quy Dang
TI - Periodic solutions to evolution equations: existence, conditional stability and admissibility of function spaces
JO - Annales Polonici Mathematici
PY - 2016
SP - 173
EP - 195
VL - 116
IS - 2
UR - http://geodesic.mathdoc.fr/articles/10.4064/ap3677-10-2015/
DO - 10.4064/ap3677-10-2015
LA - en
ID - 10_4064_ap3677_10_2015
ER -
%0 Journal Article
%A Nguyen Thieu Huy
%A Ngo Quy Dang
%T Periodic solutions to evolution equations: existence, conditional stability and admissibility of function spaces
%J Annales Polonici Mathematici
%D 2016
%P 173-195
%V 116
%N 2
%U http://geodesic.mathdoc.fr/articles/10.4064/ap3677-10-2015/
%R 10.4064/ap3677-10-2015
%G en
%F 10_4064_ap3677_10_2015
Nguyen Thieu Huy; Ngo Quy Dang. Periodic solutions to evolution equations: existence, conditional stability and admissibility of function spaces. Annales Polonici Mathematici, Tome 116 (2016) no. 2, pp. 173-195. doi: 10.4064/ap3677-10-2015