Positive solution for a quasilinear equation with critical growth in $\mathbb {R}^N$
Annales Polonici Mathematici, Tome 116 (2016) no. 3, pp. 251-262.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We study the existence of positive solutions of the quasilinear problem \begin{equation*} \left\{ \begin{array}{@{}l@{}} -\varDelta_N u+V(x)|u|^{N-2}u=f(u,|\nabla u|^{N-2}\nabla u),\quad x\in \mathbb{R}^N,\\ u(x) \gt 0,\quad x\in \mathbb{R}^N, \end{array} \right. \end{equation*} where $ \varDelta_N u =\mathop{\rm div}\nolimits (|\nabla u|^{N-2}\nabla u)$ is the $N$-Laplacian operator, $V:\mathbb{R}^N \rightarrow \mathbb{R}$ is a continuous potential, $f:\mathbb{R}\times \mathbb{R}^N \rightarrow \mathbb{R}$ is a continuous function. The main result follows from an iterative method based on Mountain Pass techniques.
DOI : 10.4064/ap3664-1-2016
Keywords: study existence positive solutions quasilinear problem begin equation* begin array vardelta x n nabla n nabla quad mathbb quad mathbb end array right end equation* where vardelta mathop div nolimits nabla n nabla n laplacian operator mathbb rightarrow mathbb continuous potential mathbb times mathbb rightarrow mathbb continuous function main result follows iterative method based mountain pass techniques

Lin Chen 1 ; Caisheng Chen 2 ; Zonghu Xiu 3

1 College of Science Hohai University 210098 Nanjing, P.R. China and College of Mathematics and Statistics Yili Normal University 835000 Yining, P.R. China
2 College of Science Hohai University 210098 Nanjing, P.R. China
3 Science and Information College Qingdao Agricultural University 266109 Qingdao, P.R. China
@article{10_4064_ap3664_1_2016,
     author = {Lin Chen and Caisheng Chen and Zonghu Xiu},
     title = {Positive solution for a quasilinear equation with critical growth in $\mathbb {R}^N$},
     journal = {Annales Polonici Mathematici},
     pages = {251--262},
     publisher = {mathdoc},
     volume = {116},
     number = {3},
     year = {2016},
     doi = {10.4064/ap3664-1-2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ap3664-1-2016/}
}
TY  - JOUR
AU  - Lin Chen
AU  - Caisheng Chen
AU  - Zonghu Xiu
TI  - Positive solution for a quasilinear equation with critical growth in $\mathbb {R}^N$
JO  - Annales Polonici Mathematici
PY  - 2016
SP  - 251
EP  - 262
VL  - 116
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ap3664-1-2016/
DO  - 10.4064/ap3664-1-2016
LA  - en
ID  - 10_4064_ap3664_1_2016
ER  - 
%0 Journal Article
%A Lin Chen
%A Caisheng Chen
%A Zonghu Xiu
%T Positive solution for a quasilinear equation with critical growth in $\mathbb {R}^N$
%J Annales Polonici Mathematici
%D 2016
%P 251-262
%V 116
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ap3664-1-2016/
%R 10.4064/ap3664-1-2016
%G en
%F 10_4064_ap3664_1_2016
Lin Chen; Caisheng Chen; Zonghu Xiu. Positive solution for a quasilinear equation with critical growth in $\mathbb {R}^N$. Annales Polonici Mathematici, Tome 116 (2016) no. 3, pp. 251-262. doi : 10.4064/ap3664-1-2016. http://geodesic.mathdoc.fr/articles/10.4064/ap3664-1-2016/

Cité par Sources :