Existence of positive radial solutions for the elliptic equations on an exterior domain
Annales Polonici Mathematici, Tome 116 (2016) no. 1, pp. 67-78
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We discuss the existence of positive radial solutions of the semilinear elliptic equation
$$
\begin{cases}
-\Delta u = K(|x|) f(u),\hbox{$x\in\Omega$,}\\
\alpha u+\beta \tfrac{\partial u}{\partial n}=0,\hbox{$x\in\partial\Omega$,}\\
\lim\limits_{|x|\to\infty}u(x)=0,
\end{cases}
$$
where $\Omega=\{x\in \mathbb R^N:|x|>r_0\}$, $N\ge 3$, $K: [r_0, \infty)\to \mathbb R^+$ is
continuous and $0\int_{r_0}^{\infty}r K(r)\,dr\infty$, $f\in C(\mathbb R^+, \mathbb R^+)$, $f(0)=0$.
Under the conditions related to the asymptotic behaviour of $f(u)/u$ at $0$ and infinity,
the existence of positive radial solutions is obtained. Our conditions are more precise and weaker than
the superlinear or sublinear growth conditions.
Our discussion is based on the fixed point index theory in cones.
Keywords:
discuss existence positive radial solutions semilinear elliptic equation begin cases delta hbox omega alpha beta tfrac partial partial hbox partial omega lim limits infty end cases where omega mathbb infty mathbb continuous int infty infty mathbb mathbb under conditions related asymptotic behaviour infinity existence positive radial solutions obtained conditions precise weaker superlinear sublinear growth conditions discussion based fixed point index theory cones
Affiliations des auteurs :
Yongxiang Li 1 ; Huanhuan Zhang 1
@article{10_4064_ap3633_12_2015,
author = {Yongxiang Li and Huanhuan Zhang},
title = {Existence of positive radial solutions for the elliptic equations on an exterior domain},
journal = {Annales Polonici Mathematici},
pages = {67--78},
publisher = {mathdoc},
volume = {116},
number = {1},
year = {2016},
doi = {10.4064/ap3633-12-2015},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap3633-12-2015/}
}
TY - JOUR AU - Yongxiang Li AU - Huanhuan Zhang TI - Existence of positive radial solutions for the elliptic equations on an exterior domain JO - Annales Polonici Mathematici PY - 2016 SP - 67 EP - 78 VL - 116 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/ap3633-12-2015/ DO - 10.4064/ap3633-12-2015 LA - en ID - 10_4064_ap3633_12_2015 ER -
%0 Journal Article %A Yongxiang Li %A Huanhuan Zhang %T Existence of positive radial solutions for the elliptic equations on an exterior domain %J Annales Polonici Mathematici %D 2016 %P 67-78 %V 116 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/ap3633-12-2015/ %R 10.4064/ap3633-12-2015 %G en %F 10_4064_ap3633_12_2015
Yongxiang Li; Huanhuan Zhang. Existence of positive radial solutions for the elliptic equations on an exterior domain. Annales Polonici Mathematici, Tome 116 (2016) no. 1, pp. 67-78. doi: 10.4064/ap3633-12-2015
Cité par Sources :