Existence of positive radial solutions for the elliptic equations on an exterior domain
Annales Polonici Mathematici, Tome 116 (2016) no. 1, pp. 67-78.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We discuss the existence of positive radial solutions of the semilinear elliptic equation $$ \begin{cases} -\Delta u = K(|x|) f(u),\hbox{$x\in\Omega$,}\\ \alpha u+\beta \tfrac{\partial u}{\partial n}=0,\hbox{$x\in\partial\Omega$,}\\ \lim\limits_{|x|\to\infty}u(x)=0, \end{cases} $$ where $\Omega=\{x\in \mathbb R^N:|x|>r_0\}$, $N\ge 3$, $K: [r_0, \infty)\to \mathbb R^+$ is continuous and $0\int_{r_0}^{\infty}r K(r)\,dr\infty$, $f\in C(\mathbb R^+, \mathbb R^+)$, $f(0)=0$. Under the conditions related to the asymptotic behaviour of $f(u)/u$ at $0$ and infinity, the existence of positive radial solutions is obtained. Our conditions are more precise and weaker than the superlinear or sublinear growth conditions. Our discussion is based on the fixed point index theory in cones.
DOI : 10.4064/ap3633-12-2015
Keywords: discuss existence positive radial solutions semilinear elliptic equation begin cases delta hbox omega alpha beta tfrac partial partial hbox partial omega lim limits infty end cases where omega mathbb infty mathbb continuous int infty infty mathbb mathbb under conditions related asymptotic behaviour infinity existence positive radial solutions obtained conditions precise weaker superlinear sublinear growth conditions discussion based fixed point index theory cones

Yongxiang Li 1 ; Huanhuan Zhang 1

1 Department of Mathematics Northwest Normal University Lanzhou 730070, People's Republic of China
@article{10_4064_ap3633_12_2015,
     author = {Yongxiang Li and Huanhuan Zhang},
     title = {Existence of positive radial solutions for the elliptic equations on an exterior domain},
     journal = {Annales Polonici Mathematici},
     pages = {67--78},
     publisher = {mathdoc},
     volume = {116},
     number = {1},
     year = {2016},
     doi = {10.4064/ap3633-12-2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ap3633-12-2015/}
}
TY  - JOUR
AU  - Yongxiang Li
AU  - Huanhuan Zhang
TI  - Existence of positive radial solutions for the elliptic equations on an exterior domain
JO  - Annales Polonici Mathematici
PY  - 2016
SP  - 67
EP  - 78
VL  - 116
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ap3633-12-2015/
DO  - 10.4064/ap3633-12-2015
LA  - en
ID  - 10_4064_ap3633_12_2015
ER  - 
%0 Journal Article
%A Yongxiang Li
%A Huanhuan Zhang
%T Existence of positive radial solutions for the elliptic equations on an exterior domain
%J Annales Polonici Mathematici
%D 2016
%P 67-78
%V 116
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ap3633-12-2015/
%R 10.4064/ap3633-12-2015
%G en
%F 10_4064_ap3633_12_2015
Yongxiang Li; Huanhuan Zhang. Existence of positive radial solutions for the elliptic equations on an exterior domain. Annales Polonici Mathematici, Tome 116 (2016) no. 1, pp. 67-78. doi : 10.4064/ap3633-12-2015. http://geodesic.mathdoc.fr/articles/10.4064/ap3633-12-2015/

Cité par Sources :