Three-dimensional locally symmetric almost Kenmotsu manifolds
Annales Polonici Mathematici, Tome 116 (2016) no. 1, pp. 79-86.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We prove that a three-dimensional almost Kenmotsu manifold is locally symmetric if and only if it is locally isometric to either the hyperbolic space $\mathbb {H}^3(-1)$ or the Riemannian product $\mathbb {H}^2(-4)\times \mathbb {R}$.
DOI : 10.4064/ap3555-12-2015
Keywords: prove three dimensional almost kenmotsu manifold locally symmetric only locally isometric either hyperbolic space mathbb riemannian product mathbb times mathbb

Yaning Wang 1

1 Henan Engineering Laboratory for Big Data Statistical Analysis and Optimal Control School of Mathematics and Information Sciences Henan Normal University Xinxiang 453007, Henan, P.R. China
@article{10_4064_ap3555_12_2015,
     author = {Yaning Wang},
     title = {Three-dimensional locally symmetric almost {Kenmotsu} manifolds},
     journal = {Annales Polonici Mathematici},
     pages = {79--86},
     publisher = {mathdoc},
     volume = {116},
     number = {1},
     year = {2016},
     doi = {10.4064/ap3555-12-2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ap3555-12-2015/}
}
TY  - JOUR
AU  - Yaning Wang
TI  - Three-dimensional locally symmetric almost Kenmotsu manifolds
JO  - Annales Polonici Mathematici
PY  - 2016
SP  - 79
EP  - 86
VL  - 116
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ap3555-12-2015/
DO  - 10.4064/ap3555-12-2015
LA  - en
ID  - 10_4064_ap3555_12_2015
ER  - 
%0 Journal Article
%A Yaning Wang
%T Three-dimensional locally symmetric almost Kenmotsu manifolds
%J Annales Polonici Mathematici
%D 2016
%P 79-86
%V 116
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ap3555-12-2015/
%R 10.4064/ap3555-12-2015
%G en
%F 10_4064_ap3555_12_2015
Yaning Wang. Three-dimensional locally symmetric almost Kenmotsu manifolds. Annales Polonici Mathematici, Tome 116 (2016) no. 1, pp. 79-86. doi : 10.4064/ap3555-12-2015. http://geodesic.mathdoc.fr/articles/10.4064/ap3555-12-2015/

Cité par Sources :