A differential-geometric analysis of the Bergman representative map
Annales Polonici Mathematici, Tome 120 (2017) no. 2, pp. 163-181
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We show that the exponential map of the Bochner connection on the restricted holomorphic tangent bundle of a complex manifold admitting the positive-definite Bergman metric coincides with the inverse of Bergman’s representative map. We also present a generalization of Lu Qi Keng’s theorem, as an application.
Keywords:
exponential map bochner connection restricted holomorphic tangent bundle complex manifold admitting positive definite bergman metric coincides inverse bergman representative map present generalization keng theorem application
Affiliations des auteurs :
Sungmin Yoo 1
@article{10_4064_ap170621_21_11,
author = {Sungmin Yoo},
title = {A differential-geometric analysis of the {Bergman} representative map},
journal = {Annales Polonici Mathematici},
pages = {163--181},
year = {2017},
volume = {120},
number = {2},
doi = {10.4064/ap170621-21-11},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap170621-21-11/}
}
TY - JOUR AU - Sungmin Yoo TI - A differential-geometric analysis of the Bergman representative map JO - Annales Polonici Mathematici PY - 2017 SP - 163 EP - 181 VL - 120 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.4064/ap170621-21-11/ DO - 10.4064/ap170621-21-11 LA - en ID - 10_4064_ap170621_21_11 ER -
Sungmin Yoo. A differential-geometric analysis of the Bergman representative map. Annales Polonici Mathematici, Tome 120 (2017) no. 2, pp. 163-181. doi: 10.4064/ap170621-21-11
Cité par Sources :