Cotton tensors on almost coKähler 3-manifolds
Annales Polonici Mathematici, Tome 120 (2017) no. 2, pp. 135-148
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
Let $M^3$ be an almost coKähler $3$-manifold whose Reeb vector field defines a harmonic map. We prove that if the Cotton tensor of $M^3$ vanishes, then $M^3$ is locally isometric to the product $\mathbb {R}\times N^2(c)$, where $N^2(c)$ denotes a Kähler surface of constant curvature $c$. We construct some examples illustrating our main results.
Mots-clés :
almost cok hler manifold whose reeb vector field defines harmonic map prove cotton tensor vanishes locally isometric product mathbb times where denotes hler surface constant curvature construct examples illustrating main results
Affiliations des auteurs :
Yaning Wang 1
@article{10_4064_ap170410_3_10,
author = {Yaning Wang},
title = {Cotton tensors on almost {coK\"ahler} 3-manifolds},
journal = {Annales Polonici Mathematici},
pages = {135--148},
year = {2017},
volume = {120},
number = {2},
doi = {10.4064/ap170410-3-10},
language = {de},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap170410-3-10/}
}
Yaning Wang. Cotton tensors on almost coKähler 3-manifolds. Annales Polonici Mathematici, Tome 120 (2017) no. 2, pp. 135-148. doi: 10.4064/ap170410-3-10
Cité par Sources :