Approximation of integration maps of vector measures and limit representations of Banach function spaces
Annales Polonici Mathematici, Tome 120 (2017) no. 1, pp. 63-81
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We study whether or not the integration maps of vector measures can be computed as pointwise limits of their finite rank Radon–Nikodým derivatives. The positive cases are obtained by using the circle of ideas related to the approximation property for Banach spaces. The negative ones are given by means of an appropriate use of the Daugavet property. As an application, we analyse when the norm in a space $L^1(m)$ of integrable functions can be computed as a limit of the norms of the spaces of integrable functions with respect to the Radon–Nikodým derivatives of $m$.
Keywords:
study whether integration maps vector measures computed pointwise limits their finite rank radon nikod derivatives positive cases obtained using circle ideas related approximation property banach spaces negative given means appropriate daugavet property application analyse norm space integrable functions computed limit norms spaces integrable functions respect radon nikod derivatives nbsp
Affiliations des auteurs :
Eduardo Jiménez Fernández 1 ; Enrique A. Sánchez Pérez 2 ; Dirk Werner 3
@article{10_4064_ap170407_21_9,
author = {Eduardo Jim\'enez Fern\'andez and Enrique A. S\'anchez P\'erez and Dirk Werner},
title = {Approximation of integration maps of vector measures and limit representations of {Banach} function spaces},
journal = {Annales Polonici Mathematici},
pages = {63--81},
year = {2017},
volume = {120},
number = {1},
doi = {10.4064/ap170407-21-9},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap170407-21-9/}
}
TY - JOUR AU - Eduardo Jiménez Fernández AU - Enrique A. Sánchez Pérez AU - Dirk Werner TI - Approximation of integration maps of vector measures and limit representations of Banach function spaces JO - Annales Polonici Mathematici PY - 2017 SP - 63 EP - 81 VL - 120 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.4064/ap170407-21-9/ DO - 10.4064/ap170407-21-9 LA - en ID - 10_4064_ap170407_21_9 ER -
%0 Journal Article %A Eduardo Jiménez Fernández %A Enrique A. Sánchez Pérez %A Dirk Werner %T Approximation of integration maps of vector measures and limit representations of Banach function spaces %J Annales Polonici Mathematici %D 2017 %P 63-81 %V 120 %N 1 %U http://geodesic.mathdoc.fr/articles/10.4064/ap170407-21-9/ %R 10.4064/ap170407-21-9 %G en %F 10_4064_ap170407_21_9
Eduardo Jiménez Fernández; Enrique A. Sánchez Pérez; Dirk Werner. Approximation of integration maps of vector measures and limit representations of Banach function spaces. Annales Polonici Mathematici, Tome 120 (2017) no. 1, pp. 63-81. doi: 10.4064/ap170407-21-9
Cité par Sources :