Équidistribution vers le courant de Green
Annales Polonici Mathematici, Tome 115 (2015) no. 3, pp. 201-218.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We establish an equidistribution result for the pull-back of a $(1,1)$-closed positive current in $\mathbb {C}^2$ by a proper polynomial map of small topological degree. We also study convergence at infinity on good compactifications of $\mathbb {C}^2$. We make use of a lemma that enables us to control the blow-up of some integrals in the neighborhood of a big logarithmic singularity of a plurisubharmonic function. Finally, we discuss the importance of the properness hypothesis, and we give some results in the case where this hypothesis is omitted.
DOI : 10.4064/ap115-3-1
Mots-clés : establish equidistribution result pull back closed positive current mathbb proper polynomial map small topological degree study convergence infinity compactifications mathbb make lemma enables control blow up integrals neighborhood logarithmic singularity plurisubharmonic function finally discuss importance properness hypothesis results where hypothesis omitted

Frédéric Protin 1

1 INSA Toulouse, Département GMM 135 Avenue de Rangueil 31400 Toulouse, France
@article{10_4064_ap115_3_1,
     author = {Fr\'ed\'eric Protin},
     title = {\'Equidistribution vers le courant de {Green}},
     journal = {Annales Polonici Mathematici},
     pages = {201--218},
     publisher = {mathdoc},
     volume = {115},
     number = {3},
     year = {2015},
     doi = {10.4064/ap115-3-1},
     language = {fr},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ap115-3-1/}
}
TY  - JOUR
AU  - Frédéric Protin
TI  - Équidistribution vers le courant de Green
JO  - Annales Polonici Mathematici
PY  - 2015
SP  - 201
EP  - 218
VL  - 115
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ap115-3-1/
DO  - 10.4064/ap115-3-1
LA  - fr
ID  - 10_4064_ap115_3_1
ER  - 
%0 Journal Article
%A Frédéric Protin
%T Équidistribution vers le courant de Green
%J Annales Polonici Mathematici
%D 2015
%P 201-218
%V 115
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ap115-3-1/
%R 10.4064/ap115-3-1
%G fr
%F 10_4064_ap115_3_1
Frédéric Protin. Équidistribution vers le courant de Green. Annales Polonici Mathematici, Tome 115 (2015) no. 3, pp. 201-218. doi : 10.4064/ap115-3-1. http://geodesic.mathdoc.fr/articles/10.4064/ap115-3-1/

Cité par Sources :