Équidistribution vers le courant de Green
Annales Polonici Mathematici, Tome 115 (2015) no. 3, pp. 201-218
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We establish an equidistribution result for the pull-back of a $(1,1)$-closed positive current in $\mathbb {C}^2$ by a proper polynomial map of small topological degree. We also study convergence at infinity on good compactifications of $\mathbb {C}^2$. We make use of a lemma that enables us to control the blow-up of some integrals in the neighborhood of a big logarithmic singularity of a plurisubharmonic function. Finally, we discuss the importance of the properness hypothesis, and we give some results in the case where this hypothesis is omitted.
Mots-clés :
establish equidistribution result pull back closed positive current mathbb proper polynomial map small topological degree study convergence infinity compactifications mathbb make lemma enables control blow up integrals neighborhood logarithmic singularity plurisubharmonic function finally discuss importance properness hypothesis results where hypothesis omitted
Affiliations des auteurs :
Frédéric Protin 1
@article{10_4064_ap115_3_1,
author = {Fr\'ed\'eric Protin},
title = {\'Equidistribution vers le courant de {Green}},
journal = {Annales Polonici Mathematici},
pages = {201--218},
publisher = {mathdoc},
volume = {115},
number = {3},
year = {2015},
doi = {10.4064/ap115-3-1},
language = {fr},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap115-3-1/}
}
Frédéric Protin. Équidistribution vers le courant de Green. Annales Polonici Mathematici, Tome 115 (2015) no. 3, pp. 201-218. doi: 10.4064/ap115-3-1
Cité par Sources :