On bivariate Hermite interpolation and the limit of certain bivariate Lagrange projectors
Annales Polonici Mathematici, Tome 115 (2015) no. 1, pp. 1-21.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We give a new poised bivariate Hermite scheme and a formula for the interpolation polynomial. We show that the Hermite interpolation polynomial is the limit of bivariate Lagrange interpolation polynomials at Bos configurations on circles.
DOI : 10.4064/ap115-1-1
Keywords: poised bivariate hermite scheme formula interpolation polynomial hermite interpolation polynomial limit bivariate lagrange interpolation polynomials bos configurations circles

Phung Van Manh 1

1 Hanoi National University of Education 136 Xuan Thuy street Cau Giay, Hanoi, Vietnam
@article{10_4064_ap115_1_1,
     author = {Phung Van Manh},
     title = {On bivariate {Hermite} interpolation and the limit
 of certain bivariate {Lagrange} projectors},
     journal = {Annales Polonici Mathematici},
     pages = {1--21},
     publisher = {mathdoc},
     volume = {115},
     number = {1},
     year = {2015},
     doi = {10.4064/ap115-1-1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ap115-1-1/}
}
TY  - JOUR
AU  - Phung Van Manh
TI  - On bivariate Hermite interpolation and the limit
 of certain bivariate Lagrange projectors
JO  - Annales Polonici Mathematici
PY  - 2015
SP  - 1
EP  - 21
VL  - 115
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ap115-1-1/
DO  - 10.4064/ap115-1-1
LA  - en
ID  - 10_4064_ap115_1_1
ER  - 
%0 Journal Article
%A Phung Van Manh
%T On bivariate Hermite interpolation and the limit
 of certain bivariate Lagrange projectors
%J Annales Polonici Mathematici
%D 2015
%P 1-21
%V 115
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ap115-1-1/
%R 10.4064/ap115-1-1
%G en
%F 10_4064_ap115_1_1
Phung Van Manh. On bivariate Hermite interpolation and the limit
 of certain bivariate Lagrange projectors. Annales Polonici Mathematici, Tome 115 (2015) no. 1, pp. 1-21. doi : 10.4064/ap115-1-1. http://geodesic.mathdoc.fr/articles/10.4064/ap115-1-1/

Cité par Sources :