Stokes' formula for stratified forms
Annales Polonici Mathematici, Tome 114 (2015) no. 3, pp. 197-206
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
A stratified form is a collection of forms defined on the strata of a stratification of a subanalytic set and satisfying a continuity property when we pass from one stratum to another. We prove that these forms satisfy Stokes' formula on subanalytic singular simplices.
Keywords:
stratified form collection forms defined strata stratification subanalytic set satisfying continuity property pass stratum another prove these forms satisfy stokes formula subanalytic singular simplices
Affiliations des auteurs :
Guillaume Valette 1
@article{10_4064_ap114_3_1,
author = {Guillaume Valette},
title = {Stokes' formula for stratified forms},
journal = {Annales Polonici Mathematici},
pages = {197--206},
publisher = {mathdoc},
volume = {114},
number = {3},
year = {2015},
doi = {10.4064/ap114-3-1},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap114-3-1/}
}
Guillaume Valette. Stokes' formula for stratified forms. Annales Polonici Mathematici, Tome 114 (2015) no. 3, pp. 197-206. doi: 10.4064/ap114-3-1
Cité par Sources :