A regularity criterion for the 2D MHD and viscoelastic fluid equations
Annales Polonici Mathematici, Tome 114 (2015) no. 2, pp. 123-131
This paper is dedicated to a regularity criterion for the
2D MHD equations and viscoelastic equations. We prove that if the magnetic field $B$, respectively the local deformation gradient $F$, satisfies
$$\nabla B,\,\,\nabla F \in L^{q}(0,T; L^{p}(\mathbb{R}^{2}))$$
for ${1}/{p}+{1}/{q}=1$ and $2 p\leq \infty$, then the
corresponding local solution can be extended beyond time $T$.
Keywords:
paper dedicated regularity criterion mhd equations viscoelastic equations prove magnetic field respectively local deformation gradient satisfies nabla nabla mathbb leq infty corresponding local solution extended beyond time
Affiliations des auteurs :
Zhuan Ye  1
@article{10_4064_ap114_2_3,
author = {Zhuan Ye},
title = {A regularity criterion for the {2D} {MHD} and viscoelastic fluid equations},
journal = {Annales Polonici Mathematici},
pages = {123--131},
year = {2015},
volume = {114},
number = {2},
doi = {10.4064/ap114-2-3},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap114-2-3/}
}
Zhuan Ye. A regularity criterion for the 2D MHD and viscoelastic fluid equations. Annales Polonici Mathematici, Tome 114 (2015) no. 2, pp. 123-131. doi: 10.4064/ap114-2-3
Cité par Sources :