A counterexample to the $\varGamma $-interpolation conjecture
Annales Polonici Mathematici, Tome 114 (2015) no. 2, pp. 115-121
Agler, Lykova and Young introduced a sequence $C_\nu $, where $\nu \geq 0$, of necessary conditions for the solvability of the finite interpolation problem for analytic functions from the open unit disc $\mathbb D$ into the symmetrized bidisc $\varGamma $. They conjectured that condition $C_{n-2}$ is necessary and sufficient for the solvability of an $n$-point interpolation problem. The aim of this article is to give a counterexample to that conjecture.
Keywords:
agler lykova young introduced sequence where geq necessary conditions solvability finite interpolation problem analytic functions unit disc mathbb symmetrized bidisc vargamma conjectured condition n necessary sufficient solvability n point interpolation problem article counterexample conjecture
Affiliations des auteurs :
Adama S. Kamara  1
@article{10_4064_ap114_2_2,
author = {Adama S. Kamara},
title = {A counterexample to the $\varGamma $-interpolation conjecture},
journal = {Annales Polonici Mathematici},
pages = {115--121},
year = {2015},
volume = {114},
number = {2},
doi = {10.4064/ap114-2-2},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap114-2-2/}
}
Adama S. Kamara. A counterexample to the $\varGamma $-interpolation conjecture. Annales Polonici Mathematici, Tome 114 (2015) no. 2, pp. 115-121. doi: 10.4064/ap114-2-2
Cité par Sources :