Gradient estimates for the $p(x)$-Laplacian equation in $\mathbb R^N$
Annales Polonici Mathematici, Tome 114 (2015) no. 1, pp. 45-65
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Under some assumptions on the function $p(x)$, we obtain global gradient estimates for weak solutions of the $p(x)$-Laplacian type equation in $\mathbb R^N$.
Keywords:
under assumptions function obtain global gradient estimates weak solutions laplacian type equation mathbb
Affiliations des auteurs :
Chao Zhang 1 ; Shulin Zhou 2 ; Bin Ge 3
@article{10_4064_ap114_1_4,
author = {Chao Zhang and Shulin Zhou and Bin Ge},
title = {Gradient estimates for the $p(x)${-Laplacian} equation in $\mathbb R^N$},
journal = {Annales Polonici Mathematici},
pages = {45--65},
publisher = {mathdoc},
volume = {114},
number = {1},
year = {2015},
doi = {10.4064/ap114-1-4},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap114-1-4/}
}
TY - JOUR AU - Chao Zhang AU - Shulin Zhou AU - Bin Ge TI - Gradient estimates for the $p(x)$-Laplacian equation in $\mathbb R^N$ JO - Annales Polonici Mathematici PY - 2015 SP - 45 EP - 65 VL - 114 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/ap114-1-4/ DO - 10.4064/ap114-1-4 LA - en ID - 10_4064_ap114_1_4 ER -
%0 Journal Article %A Chao Zhang %A Shulin Zhou %A Bin Ge %T Gradient estimates for the $p(x)$-Laplacian equation in $\mathbb R^N$ %J Annales Polonici Mathematici %D 2015 %P 45-65 %V 114 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/ap114-1-4/ %R 10.4064/ap114-1-4 %G en %F 10_4064_ap114_1_4
Chao Zhang; Shulin Zhou; Bin Ge. Gradient estimates for the $p(x)$-Laplacian equation in $\mathbb R^N$. Annales Polonici Mathematici, Tome 114 (2015) no. 1, pp. 45-65. doi: 10.4064/ap114-1-4
Cité par Sources :