1Department of Mathematics Harbin Institute of Technology Harbin 150001, China 2LMAM, School of Mathematical Sciences Peking University Beijing 100871, China 3Department of Mathematics Harbin Engineering University Harbin 150001, China
Annales Polonici Mathematici, Tome 114 (2015) no. 1, pp. 45-65
Under some assumptions on the function $p(x)$, we obtain global gradient estimates for weak solutions of the $p(x)$-Laplacian type equation in $\mathbb R^N$.
1
Department of Mathematics Harbin Institute of Technology Harbin 150001, China
2
LMAM, School of Mathematical Sciences Peking University Beijing 100871, China
3
Department of Mathematics Harbin Engineering University Harbin 150001, China
@article{10_4064_ap114_1_4,
author = {Chao Zhang and Shulin Zhou and Bin Ge},
title = {Gradient estimates for the $p(x)${-Laplacian} equation in $\mathbb R^N$},
journal = {Annales Polonici Mathematici},
pages = {45--65},
year = {2015},
volume = {114},
number = {1},
doi = {10.4064/ap114-1-4},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap114-1-4/}
}
TY - JOUR
AU - Chao Zhang
AU - Shulin Zhou
AU - Bin Ge
TI - Gradient estimates for the $p(x)$-Laplacian equation in $\mathbb R^N$
JO - Annales Polonici Mathematici
PY - 2015
SP - 45
EP - 65
VL - 114
IS - 1
UR - http://geodesic.mathdoc.fr/articles/10.4064/ap114-1-4/
DO - 10.4064/ap114-1-4
LA - en
ID - 10_4064_ap114_1_4
ER -
%0 Journal Article
%A Chao Zhang
%A Shulin Zhou
%A Bin Ge
%T Gradient estimates for the $p(x)$-Laplacian equation in $\mathbb R^N$
%J Annales Polonici Mathematici
%D 2015
%P 45-65
%V 114
%N 1
%U http://geodesic.mathdoc.fr/articles/10.4064/ap114-1-4/
%R 10.4064/ap114-1-4
%G en
%F 10_4064_ap114_1_4
Chao Zhang; Shulin Zhou; Bin Ge. Gradient estimates for the $p(x)$-Laplacian equation in $\mathbb R^N$. Annales Polonici Mathematici, Tome 114 (2015) no. 1, pp. 45-65. doi: 10.4064/ap114-1-4