Homoclinic orbits for an almost periodically forced singular Newtonian system in $\mathbb R^3$
Annales Polonici Mathematici, Tome 114 (2015) no. 1, pp. 29-43.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

This work uses a variational approach to establish the existence of at least two homoclinic solutions for a family of singular Newtonian systems in $\mathbb R^3$ which are subjected to almost periodic forcing in time variable.
DOI : 10.4064/ap114-1-3
Keywords: work uses variational approach establish existence least homoclinic solutions family singular newtonian systems mathbb which subjected almost periodic forcing time variable

Robert Krawczyk 1

1 Faculty of Applied Physics and Mathematics Gdańsk University of Technology Narutowicza 11/12 80-233 Gdańsk, Poland
@article{10_4064_ap114_1_3,
     author = {Robert Krawczyk},
     title = {Homoclinic orbits for an almost periodically forced
 singular {Newtonian} system in $\mathbb R^3$},
     journal = {Annales Polonici Mathematici},
     pages = {29--43},
     publisher = {mathdoc},
     volume = {114},
     number = {1},
     year = {2015},
     doi = {10.4064/ap114-1-3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ap114-1-3/}
}
TY  - JOUR
AU  - Robert Krawczyk
TI  - Homoclinic orbits for an almost periodically forced
 singular Newtonian system in $\mathbb R^3$
JO  - Annales Polonici Mathematici
PY  - 2015
SP  - 29
EP  - 43
VL  - 114
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ap114-1-3/
DO  - 10.4064/ap114-1-3
LA  - en
ID  - 10_4064_ap114_1_3
ER  - 
%0 Journal Article
%A Robert Krawczyk
%T Homoclinic orbits for an almost periodically forced
 singular Newtonian system in $\mathbb R^3$
%J Annales Polonici Mathematici
%D 2015
%P 29-43
%V 114
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ap114-1-3/
%R 10.4064/ap114-1-3
%G en
%F 10_4064_ap114_1_3
Robert Krawczyk. Homoclinic orbits for an almost periodically forced
 singular Newtonian system in $\mathbb R^3$. Annales Polonici Mathematici, Tome 114 (2015) no. 1, pp. 29-43. doi : 10.4064/ap114-1-3. http://geodesic.mathdoc.fr/articles/10.4064/ap114-1-3/

Cité par Sources :