Alpha-invariant of toric line bundles
Annales Polonici Mathematici, Tome 114 (2015) no. 1, pp. 13-27
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We generalize the work of Jian Song by computing the $\alpha $-invariant of any (nef and big) toric line bundle in terms of the associated polytope. We use the analytic version of the computation of the log canonical threshold of monomial ideals to give the log canonical threshold of any non-negatively curved singular hermitian metric on the line bundle, and deduce the $\alpha $-invariant from this.
Keywords:
generalize work jian song computing alpha invariant nef toric line bundle terms associated polytope analytic version computation log canonical threshold monomial ideals log canonical threshold non negatively curved singular hermitian metric line bundle deduce alpha invariant
Affiliations des auteurs :
Thibaut Delcroix 1
@article{10_4064_ap114_1_2,
author = {Thibaut Delcroix},
title = {Alpha-invariant of toric line bundles},
journal = {Annales Polonici Mathematici},
pages = {13--27},
publisher = {mathdoc},
volume = {114},
number = {1},
year = {2015},
doi = {10.4064/ap114-1-2},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap114-1-2/}
}
Thibaut Delcroix. Alpha-invariant of toric line bundles. Annales Polonici Mathematici, Tome 114 (2015) no. 1, pp. 13-27. doi: 10.4064/ap114-1-2
Cité par Sources :