Existence of solutions for a class of Kirchhoff type problems in Orlicz–Sobolev spaces
Annales Polonici Mathematici, Tome 113 (2015) no. 3, pp. 283-294
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We consider Kirchhoff type problems of the form
$$
\left\{\begin{aligned}
{-} M(\rho(u)) (\mathrm{div}(a(|\nabla u|)\nabla u)-a(|u|)u)=K(x)f(u)
\quad \text{in } \Omega,\\\textstyle
\frac{\partial u}{\partial \nu} = 0 \quad \text{on } \partial\Omega,
\end{aligned}\right.
$$
where $\Omega \subset \mathbb R^N$, $N \geq 3$, is a smooth bounded domain, $\nu$
is the outward unit normal to $\partial\Omega$, $\rho(u)= \int_\Omega (\Phi
(|\nabla u|)+\Phi(|u|) )\, dx$, $M: [0,\infty) \to \mathbb R$ is a continuous
function, $K\in L^\infty(\Omega)$, and $f: \mathbb R\to\mathbb R$ is a continuous function not
satisfying the Ambrosetti–Rabinowitz type condition. Using variational methods,
we obtain some existence and multiplicity results.
Keywords:
consider kirchhoff type problems form begin aligned rho mathrm div nabla nabla a u quad text omega amp textstyle frac partial partial quad text partial omega end aligned right where omega subset mathbb geq smooth bounded domain outward unit normal partial omega rho int omega phi nabla phi infty mathbb continuous function infty omega mathbb mathbb continuous function satisfying ambrosetti rabinowitz type condition using variational methods obtain existence multiplicity results
Affiliations des auteurs :
Nguyen Thanh Chung 1
@article{10_4064_ap113_3_5,
author = {Nguyen Thanh Chung},
title = {Existence of solutions for a class of {Kirchhoff} type problems in {Orlicz{\textendash}Sobolev} spaces},
journal = {Annales Polonici Mathematici},
pages = {283--294},
year = {2015},
volume = {113},
number = {3},
doi = {10.4064/ap113-3-5},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap113-3-5/}
}
TY - JOUR AU - Nguyen Thanh Chung TI - Existence of solutions for a class of Kirchhoff type problems in Orlicz–Sobolev spaces JO - Annales Polonici Mathematici PY - 2015 SP - 283 EP - 294 VL - 113 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.4064/ap113-3-5/ DO - 10.4064/ap113-3-5 LA - en ID - 10_4064_ap113_3_5 ER -
Nguyen Thanh Chung. Existence of solutions for a class of Kirchhoff type problems in Orlicz–Sobolev spaces. Annales Polonici Mathematici, Tome 113 (2015) no. 3, pp. 283-294. doi: 10.4064/ap113-3-5
Cité par Sources :