Existence of solutions for a class of Kirchhoff type problems in Orlicz–Sobolev spaces
Annales Polonici Mathematici, Tome 113 (2015) no. 3, pp. 283-294.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We consider Kirchhoff type problems of the form $$ \left\{\begin{aligned} {-} M(\rho(u)) (\mathrm{div}(a(|\nabla u|)\nabla u)-a(|u|)u)=K(x)f(u) \quad \text{in } \Omega,\\\textstyle \frac{\partial u}{\partial \nu} = 0 \quad \text{on } \partial\Omega, \end{aligned}\right. $$ where $\Omega \subset \mathbb R^N$, $N \geq 3$, is a smooth bounded domain, $\nu$ is the outward unit normal to $\partial\Omega$, $\rho(u)= \int_\Omega (\Phi (|\nabla u|)+\Phi(|u|) )\, dx$, $M: [0,\infty) \to \mathbb R$ is a continuous function, $K\in L^\infty(\Omega)$, and $f: \mathbb R\to\mathbb R$ is a continuous function not satisfying the Ambrosetti–Rabinowitz type condition. Using variational methods, we obtain some existence and multiplicity results.
DOI : 10.4064/ap113-3-5
Keywords: consider kirchhoff type problems form begin aligned rho mathrm div nabla nabla a u quad text omega amp textstyle frac partial partial quad text partial omega end aligned right where omega subset mathbb geq smooth bounded domain outward unit normal partial omega rho int omega phi nabla phi infty mathbb continuous function infty omega mathbb mathbb continuous function satisfying ambrosetti rabinowitz type condition using variational methods obtain existence multiplicity results

Nguyen Thanh Chung 1

1 Department of Mathematics Quang Binh University 312 Ly Thuong Kiet Dong Hoi, Quang Binh, Vietnam
@article{10_4064_ap113_3_5,
     author = {Nguyen Thanh Chung},
     title = {Existence of solutions for a class of {Kirchhoff} type problems in {Orlicz{\textendash}Sobolev} spaces},
     journal = {Annales Polonici Mathematici},
     pages = {283--294},
     publisher = {mathdoc},
     volume = {113},
     number = {3},
     year = {2015},
     doi = {10.4064/ap113-3-5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ap113-3-5/}
}
TY  - JOUR
AU  - Nguyen Thanh Chung
TI  - Existence of solutions for a class of Kirchhoff type problems in Orlicz–Sobolev spaces
JO  - Annales Polonici Mathematici
PY  - 2015
SP  - 283
EP  - 294
VL  - 113
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ap113-3-5/
DO  - 10.4064/ap113-3-5
LA  - en
ID  - 10_4064_ap113_3_5
ER  - 
%0 Journal Article
%A Nguyen Thanh Chung
%T Existence of solutions for a class of Kirchhoff type problems in Orlicz–Sobolev spaces
%J Annales Polonici Mathematici
%D 2015
%P 283-294
%V 113
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ap113-3-5/
%R 10.4064/ap113-3-5
%G en
%F 10_4064_ap113_3_5
Nguyen Thanh Chung. Existence of solutions for a class of Kirchhoff type problems in Orlicz–Sobolev spaces. Annales Polonici Mathematici, Tome 113 (2015) no. 3, pp. 283-294. doi : 10.4064/ap113-3-5. http://geodesic.mathdoc.fr/articles/10.4064/ap113-3-5/

Cité par Sources :