Hölder regularity for solutions to complex Monge–Ampère equations
Annales Polonici Mathematici, Tome 113 (2015) no. 2, pp. 109-127.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We consider the Dirichlet problem for the complex Monge–Ampère equation in a bounded strongly hyperconvex Lipschitz domain in $\mathbb C^n$. We first give a sharp estimate on the modulus of continuity of the solution when the boundary data is continuous and the right hand side has a continuous density. Then we consider the case when the boundary value function is $\mathcal {C}^{1,1}$ and the right hand side has a density in $L^p(\varOmega )$ for some $p>1$, and prove the Hölder continuity of the solution.
DOI : 10.4064/ap113-2-1
Mots-clés : consider dirichlet problem complex monge amp equation bounded strongly hyperconvex lipschitz domain nbsp mathbb first sharp estimate modulus continuity solution boundary continuous right side has continuous density consider boundary value function mathcal right side has density varomega prove lder continuity solution

Mohamad Charabati 1

1 Institut de Mathématiques de Toulouse Université Paul Sabatier 118 Route de Narbonne 31062 Toulouse Cedex 09, France
@article{10_4064_ap113_2_1,
     author = {Mohamad Charabati},
     title = {H\"older regularity for solutions to complex {Monge{\textendash}Amp\`ere} equations},
     journal = {Annales Polonici Mathematici},
     pages = {109--127},
     publisher = {mathdoc},
     volume = {113},
     number = {2},
     year = {2015},
     doi = {10.4064/ap113-2-1},
     language = {fr},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ap113-2-1/}
}
TY  - JOUR
AU  - Mohamad Charabati
TI  - Hölder regularity for solutions to complex Monge–Ampère equations
JO  - Annales Polonici Mathematici
PY  - 2015
SP  - 109
EP  - 127
VL  - 113
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ap113-2-1/
DO  - 10.4064/ap113-2-1
LA  - fr
ID  - 10_4064_ap113_2_1
ER  - 
%0 Journal Article
%A Mohamad Charabati
%T Hölder regularity for solutions to complex Monge–Ampère equations
%J Annales Polonici Mathematici
%D 2015
%P 109-127
%V 113
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ap113-2-1/
%R 10.4064/ap113-2-1
%G fr
%F 10_4064_ap113_2_1
Mohamad Charabati. Hölder regularity for solutions to complex Monge–Ampère equations. Annales Polonici Mathematici, Tome 113 (2015) no. 2, pp. 109-127. doi : 10.4064/ap113-2-1. http://geodesic.mathdoc.fr/articles/10.4064/ap113-2-1/

Cité par Sources :