Hölder regularity for solutions to complex Monge–Ampère equations
Annales Polonici Mathematici, Tome 113 (2015) no. 2, pp. 109-127
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We consider the Dirichlet problem for the complex Monge–Ampère equation in a bounded strongly hyperconvex Lipschitz domain in $\mathbb C^n$. We first give a sharp estimate on the modulus of continuity of the solution when the boundary data is continuous and the right hand side has a continuous density. Then we consider the case when the boundary value function is $\mathcal {C}^{1,1}$ and the right hand side has a density in $L^p(\varOmega )$ for some $p>1$, and prove the Hölder continuity of the solution.
Mots-clés :
consider dirichlet problem complex monge amp equation bounded strongly hyperconvex lipschitz domain nbsp mathbb first sharp estimate modulus continuity solution boundary continuous right side has continuous density consider boundary value function mathcal right side has density varomega prove lder continuity solution
Affiliations des auteurs :
Mohamad Charabati 1
@article{10_4064_ap113_2_1,
author = {Mohamad Charabati},
title = {H\"older regularity for solutions to complex {Monge{\textendash}Amp\`ere} equations},
journal = {Annales Polonici Mathematici},
pages = {109--127},
year = {2015},
volume = {113},
number = {2},
doi = {10.4064/ap113-2-1},
language = {fr},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap113-2-1/}
}
TY - JOUR AU - Mohamad Charabati TI - Hölder regularity for solutions to complex Monge–Ampère equations JO - Annales Polonici Mathematici PY - 2015 SP - 109 EP - 127 VL - 113 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.4064/ap113-2-1/ DO - 10.4064/ap113-2-1 LA - fr ID - 10_4064_ap113_2_1 ER -
Mohamad Charabati. Hölder regularity for solutions to complex Monge–Ampère equations. Annales Polonici Mathematici, Tome 113 (2015) no. 2, pp. 109-127. doi: 10.4064/ap113-2-1
Cité par Sources :