Two remarks on the Suita conjecture
Annales Polonici Mathematici, Tome 113 (2015) no. 1, pp. 61-63.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

It is shown that the weak multidimensional Suita conjecture fails for any bounded non-pseudoconvex domain with $C^{1+\varepsilon }$-smooth boundary. On the other hand, it is proved that the weak converse to the Suita conjecture holds for any finitely connected planar domain.
DOI : 10.4064/ap113-1-3
Keywords: shown weak multidimensional suita conjecture fails bounded non pseudoconvex domain varepsilon smooth boundary other proved weak converse suita conjecture holds finitely connected planar domain

Nikolai Nikolov 1

1 Institute of Mathematics and Informatics Bulgarian Academy of Sciences Acad. G. Bonchev St., Block 8 1113 Sofia, Bulgaria and Faculty of Information Sciences State University of Library Studies and Information Technologies 69A, Shipchenski prohod St. 1574 Sofia, Bulgaria
@article{10_4064_ap113_1_3,
     author = {Nikolai Nikolov},
     title = {Two remarks on the {Suita} conjecture},
     journal = {Annales Polonici Mathematici},
     pages = {61--63},
     publisher = {mathdoc},
     volume = {113},
     number = {1},
     year = {2015},
     doi = {10.4064/ap113-1-3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ap113-1-3/}
}
TY  - JOUR
AU  - Nikolai Nikolov
TI  - Two remarks on the Suita conjecture
JO  - Annales Polonici Mathematici
PY  - 2015
SP  - 61
EP  - 63
VL  - 113
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ap113-1-3/
DO  - 10.4064/ap113-1-3
LA  - en
ID  - 10_4064_ap113_1_3
ER  - 
%0 Journal Article
%A Nikolai Nikolov
%T Two remarks on the Suita conjecture
%J Annales Polonici Mathematici
%D 2015
%P 61-63
%V 113
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ap113-1-3/
%R 10.4064/ap113-1-3
%G en
%F 10_4064_ap113_1_3
Nikolai Nikolov. Two remarks on the Suita conjecture. Annales Polonici Mathematici, Tome 113 (2015) no. 1, pp. 61-63. doi : 10.4064/ap113-1-3. http://geodesic.mathdoc.fr/articles/10.4064/ap113-1-3/

Cité par Sources :