Sum of squares and the Łojasiewicz exponent at infinity
Annales Polonici Mathematici, Tome 112 (2014) no. 3, pp. 223-237
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
Let $V\subset \mathbf {\mathbb {R}}^n$, $n\ge 2$, be an unbounded algebraic set defined by a system of polynomial equations $h_1(x)=\cdots =h_r(x)=0$ and let $f:\mathbf {\mathbb {R}}^n\to \mathbf {\mathbb {R}}$ be a polynomial. It is known that if $f$ is positive on $V$ then $f|_V$ extends to a positive polynomial on the ambient space $\mathbf {\mathbb {R}}^n$, provided $V$ is a variety. We give a constructive proof of this fact for an arbitrary algebraic set $V$. Precisely, if $f$ is positive on $V$ then there exists a polynomial $h(x)=\sum_{i=1}^r h_i^2(x)\sigma _i(x)$, where $\sigma _i$ are sums of squares of polynomials of degree at most $p$, such that $f(x)+h(x)>0$ for $x\in \mathbf {\mathbb {R}}^n$. We give an estimate for $p$ in terms of: the degree of $f$, the degrees of $h_i$ and the
Łojasiewicz exponent at infinity of $f|_V$. We prove a version of the above result for polynomials positive on semialgebraic sets. We also obtain a nonnegative extension of some odd power of $f$ which is nonnegative on an irreducible algebraic set.
Mots-clés :
subset mathbf mathbb unbounded algebraic set defined system polynomial equations cdots mathbf mathbb mathbf mathbb polynomial known positive extends positive polynomial ambient space mathbf mathbb provided variety constructive proof arbitrary algebraic set precisely positive there exists polynomial sum sigma where sigma sums squares polynomials degree nbsp mathbf mathbb estimate terms degree degrees ojasiewicz exponent infinity prove version above result polynomials positive semialgebraic sets obtain nonnegative extension odd power which nonnegative irreducible algebraic set
Affiliations des auteurs :
Krzysztof Kurdyka 1 ; Beata Osińska-Ulrych 2 ; Grzegorz Skalski 2 ; Stanisław Spodzieja 2
@article{10_4064_ap112_3_2,
author = {Krzysztof Kurdyka and Beata Osi\'nska-Ulrych and Grzegorz Skalski and Stanis{\l}aw Spodzieja},
title = {Sum of squares and the {{\L}ojasiewicz} exponent at infinity},
journal = {Annales Polonici Mathematici},
pages = {223--237},
year = {2014},
volume = {112},
number = {3},
doi = {10.4064/ap112-3-2},
language = {pl},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap112-3-2/}
}
TY - JOUR AU - Krzysztof Kurdyka AU - Beata Osińska-Ulrych AU - Grzegorz Skalski AU - Stanisław Spodzieja TI - Sum of squares and the Łojasiewicz exponent at infinity JO - Annales Polonici Mathematici PY - 2014 SP - 223 EP - 237 VL - 112 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.4064/ap112-3-2/ DO - 10.4064/ap112-3-2 LA - pl ID - 10_4064_ap112_3_2 ER -
%0 Journal Article %A Krzysztof Kurdyka %A Beata Osińska-Ulrych %A Grzegorz Skalski %A Stanisław Spodzieja %T Sum of squares and the Łojasiewicz exponent at infinity %J Annales Polonici Mathematici %D 2014 %P 223-237 %V 112 %N 3 %U http://geodesic.mathdoc.fr/articles/10.4064/ap112-3-2/ %R 10.4064/ap112-3-2 %G pl %F 10_4064_ap112_3_2
Krzysztof Kurdyka; Beata Osińska-Ulrych; Grzegorz Skalski; Stanisław Spodzieja. Sum of squares and the Łojasiewicz exponent at infinity. Annales Polonici Mathematici, Tome 112 (2014) no. 3, pp. 223-237. doi: 10.4064/ap112-3-2
Cité par Sources :