On the uniqueness problem for meromorphic mappings with truncated multiplicities
Annales Polonici Mathematici, Tome 112 (2014) no. 2, pp. 165-179.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

The purpose of this paper is twofold. The first is to weaken or omit the condition $\dim f^{-1}(H_i\cap H_j)\leq m-2$ for $i\not =j$ in some previous uniqueness theorems for meromorphic mappings. The second is to decrease the number $q$ of hyperplanes $H_j$ such that $f(z)=g(z)$ on $ \bigcup _{j=1}^{q}f^{-1}(H_j)$, where $f,g$ are meromorphic mappings.
DOI : 10.4064/ap112-2-4
Keywords: purpose paper twofold first weaken omit condition dim cap leq m previous uniqueness theorems meromorphic mappings second decrease number hyperplanes bigcup where meromorphic mappings

Feng Lü 1

1 College of Science China University of Petroleum Qingdao, Shandong, 266580, P.R. China
@article{10_4064_ap112_2_4,
     author = {Feng L\"u},
     title = {On the uniqueness problem for meromorphic mappings with truncated multiplicities},
     journal = {Annales Polonici Mathematici},
     pages = {165--179},
     publisher = {mathdoc},
     volume = {112},
     number = {2},
     year = {2014},
     doi = {10.4064/ap112-2-4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ap112-2-4/}
}
TY  - JOUR
AU  - Feng Lü
TI  - On the uniqueness problem for meromorphic mappings with truncated multiplicities
JO  - Annales Polonici Mathematici
PY  - 2014
SP  - 165
EP  - 179
VL  - 112
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ap112-2-4/
DO  - 10.4064/ap112-2-4
LA  - en
ID  - 10_4064_ap112_2_4
ER  - 
%0 Journal Article
%A Feng Lü
%T On the uniqueness problem for meromorphic mappings with truncated multiplicities
%J Annales Polonici Mathematici
%D 2014
%P 165-179
%V 112
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ap112-2-4/
%R 10.4064/ap112-2-4
%G en
%F 10_4064_ap112_2_4
Feng Lü. On the uniqueness problem for meromorphic mappings with truncated multiplicities. Annales Polonici Mathematici, Tome 112 (2014) no. 2, pp. 165-179. doi : 10.4064/ap112-2-4. http://geodesic.mathdoc.fr/articles/10.4064/ap112-2-4/

Cité par Sources :