On the uniqueness problem for meromorphic mappings with truncated multiplicities
Annales Polonici Mathematici, Tome 112 (2014) no. 2, pp. 165-179
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
The purpose of this paper is twofold. The first is to weaken or omit the condition $\dim f^{-1}(H_i\cap H_j)\leq m-2$ for $i\not =j$ in some previous uniqueness theorems for meromorphic mappings. The second is to decrease the number $q$ of hyperplanes $H_j$ such that $f(z)=g(z)$ on $ \bigcup _{j=1}^{q}f^{-1}(H_j)$, where $f,g$ are meromorphic mappings.
Keywords:
purpose paper twofold first weaken omit condition dim cap leq m previous uniqueness theorems meromorphic mappings second decrease number hyperplanes bigcup where meromorphic mappings
Affiliations des auteurs :
Feng Lü 1
@article{10_4064_ap112_2_4,
author = {Feng L\"u},
title = {On the uniqueness problem for meromorphic mappings with truncated multiplicities},
journal = {Annales Polonici Mathematici},
pages = {165--179},
year = {2014},
volume = {112},
number = {2},
doi = {10.4064/ap112-2-4},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap112-2-4/}
}
TY - JOUR AU - Feng Lü TI - On the uniqueness problem for meromorphic mappings with truncated multiplicities JO - Annales Polonici Mathematici PY - 2014 SP - 165 EP - 179 VL - 112 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.4064/ap112-2-4/ DO - 10.4064/ap112-2-4 LA - en ID - 10_4064_ap112_2_4 ER -
Feng Lü. On the uniqueness problem for meromorphic mappings with truncated multiplicities. Annales Polonici Mathematici, Tome 112 (2014) no. 2, pp. 165-179. doi: 10.4064/ap112-2-4
Cité par Sources :